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Field-effect transistors (FETs)

Field-effect transistors are basically variable resistors, where the 
resistance is controlled by a third terminal called a gate. 

• Proposed long before BJTs (1920s by Lilienfield), but not realized 
until well after BJTs.  FETs became dominant in 1980s. 

• Carriers enter the FET at the source and exit at the drain.  The path 
from source to drain is called the channel. 

• There is no DC current flowing in or out of the gate, so source 
current equals drain current.  (Always referred to as drain current.) 

• As a first cut, the carriers move by drift with one type of carrier being  
dominant, so FETs are considered to be unipolar devices. 

• If current is carried by electrons, the FET is an n-channel device and 
the current flows from drain to source. 

• If the current is carried by holes, it is a p-channel device and the 
current flows from source to drain.
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Different FETs are distinguished by the mechanism through which the 
gate controls the drain current. 

• Junction FETs (JFETs) and Metal-semiconductor FETs (MESFETs) use 
reverse-biased pn junctions to “squeeze” the width of a channel.  
The gate voltage adjusts the depletion-layer widths and hence the 
effective width of the channel. These were the first FETs, but are 
virtually obsolete now. 

• Heterojunction and quantum-well FETs (HFETs, QWFETs) use 
carefully constructed semiconductor layers to confine a carriers in a 
narrow channel (band-gap engineering).  The applied gate voltage 
moves the bands up and down, adjusting the number of carriers in 
the channel.  Generally, these heterojunction-based devices used 
semiconductors that have t high electron mobilities, and so they also 
known as high-electron mobility transistors (HEMTs) 

• Metal oxide semiconductor FETs (MOSFETs) use an insulating layer 
(usually silicon dioxide) to create a thin layer of electrons or holes 
(inversion layer).  The gate couples to the channel carriers using the 
capacitance formed by the insulator.

FETs
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Recall the simple resistor:

Jn = qnvn

vn = μnℰ

Jn = qnμnℰ

If n is uniform down the length of the resistor, n = ND and

ℰ =
VDS

L

ID = Jn (W ⋅ t)

ID = qμn (NDt) ( W
L ) VDS

ℰ

vn
L

t

W

source

drain
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We will find it useful to combine the carrier concentration and the 
thickness of the conducting channel into a single quantity called the 
sheet concentration, ns:

ns = n ⋅ t

The units are m–2 (cm–2 or µm–2)

ID = qμnns ( W
L ) VDS

One of the things that we will see almost immediately is that the 
concentration is not uniform down the length of the channel.  The non-
uniformity is caused by the combination of the gate voltage controlling 
the sheet concentration in the channel and the drain voltage that causes 
the carriers to flow along the channel. 

FETs are inherently two-dimensional devices — there are field along the 
channel (moving carriers) and transverse to the channel (controlling 
concentrations).  We will try to hide the two-dimensional nature, but 
ultimately we will not be completely successful.

RDS =
1

qμnns ( W
L )
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If carrier concentration is not constant down the length of the channel, 
then we cannot define a simple channel resistance. 

ID = qWμn (x) ns (x)
dϕ
dx

Recall that the current at each point along the channel must be 
continuous.  (KCL)  At any point x along the channel, 

The variations along the channel (in the x-direction) are caused by 
variations in the electrostatic potential.  So µn and ns are implicit 
functions of φ.  

ID = qWμn (ϕ) ns (ϕ) dϕ
dx

IDdx = qWμn (ϕ) ns (ϕ) dϕ

∫
L

0
IDdx = ∫

VDS

0
qWμn (ϕ) ns (ϕ) dϕ

ID =
qW
L ∫

VDS

0
μn (ϕ) ns (ϕ) dϕ

L

source drainID

dx

φ = 0

0

φ = VDS
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ID =
qW
L ∫

VDS

0
μn (ϕ) ns (ϕ) dϕ

So for a given type of FET, we need to determine how ns depends on the 
local electrostatic potential.  (Presumably, that will also allow us to 
determine how the mobility varies, as well.)  From electromagnetics, we 
know about Poisson’s equation:

∂2ϕ
∂x2

+
∂2ϕ
∂y2

= −
ρ (x, y)

ϵ

Yikes!  Here is the two-dimensionality staring us in the face.  This will 
be hard.  To make it easier, we will often start by invoking the gradual-
channel approximation, in which we assume that the variations along 
the channel (in the x-direction) are much weaker than the variations 
across the channel (in the y-direction). 

∂ϕ
∂x

< <
∂ϕ
∂y

(Stated another way: the electric field along the 
channel is weaker than the field across the channel.)

∂2ϕ
∂y2

= −
ρ
ϵ

This will be easier to solve.


