Loops

EE 285

Now we add more power to our programming. One of the advantages
of a computer is that it can do the same (probably dumb) thing over and
over, very fast. This is called looping — like a race car looping around
track. In the Indy 500, someone counts out 200 laps and then a
checkered flag is waved to indicate the end of the race so that the cars
can stop. Similarly the loops in our program will need some mechanism
to control the number of “laps”. There are “while” loops and “for”
loops. We start with while loops. We see later that “for” loops are a
special case of “while” loops.

The thought process for the race car driver is something like this:
1. Check the current number of laps completed.

2a. If the number of laps is less than 200, then race one more lap.
3. Increment the counter.

4. Repeat.

2b. If the number of laps = 200, then stop racing and declare a winner.

loops — 1

EE 285

The process can be visualized with a flow diagram. Making a flow

diagram is not necessary, but it can be helpful.

Initialize lap counter

Has counter
reached 2007

Yes

Race one lap

|

increment the counter

Stop. The race is over

loops — 2

While Loops

EE 285

In a computer, the process is exactly the same. There should be a
counter to keep track of the loops. There is a condition the must be
checked — done inside a “while” block. Depending on the result of the
conditional check, either go through the loop again or jump out of the
loop and go to the next part of the program.

The basic program structure:

el = 0l Ny the f‘counter”
while (some conditional expression, maybe involving 1) {

Do something here inside the loop;

increment i;

loops — 3

#include <stdio.h> This is loop 0.
int main(void) { This is loop 1.

int i = 0; This is loop 2.

w'hi]f:‘(1< 16){
printf("This is loop %d.\n\n", 1i);
i++;
} This is loop 4.
return 0;

} This is loop 5.

This is loop 3.

This is loop 6.

I++; is the “increment” operation. o
This 1s loop 7.

It has the same effectasi=i+ 1; o
This 1s loop 8.

This is loop 9.
The sequence of steps: Read the

value of the variable i. Then
increment by 1 (add 1 to the original
value). Store the new value back in
the memory location for i.

Program ended with exit code: ©

EE 285 loops — 4

EE 285

#include <stdio.h>
int main(void) {
int 1 = 1;

while(1 <= 10){
printf("This is loop %d.\n\n", 1i);
1++;

}

return 0

Similar program, but slightly different
counting and conditional.

This
This
This
This
This
This
This
This
This

This

is
is
is
is
is
is
is
is
is

is

Program

loop
Lloop
Loop
Loop
Loop
Loop
Lloop
Lloop
Lloop

Lloop

9.

10.

ended with exit code: o

loops — 5

10
Can count down, too.

B
#include <stdio.h> 8
int main(void) { 7
int 1 = 10; 6
while(1 > 0){ 5
printf("sd\n\n", i);
1—; 4
}
3
printf("Boom! !\n\n");
return 0: 2
}
1
Boom! !|

i-- is the “decrement” operator.
Program ended with exit code: ©
It has the same effect as i=1-1;

EE 285 loops — 6

Something more practical.

Print out a table of Fahrenheit to Celsius temperature conversions.

#include <stdio.h>
int main(void) {

int 1 = -40;
float degrees_C;

printf("Fahrenheit Celsius\n\n");
while(i <= 120){

degrees_C = 5.0/9.0%(1i - 32.0); //int is automatically converted to float
printf(" %d %f \n", i, degrees_C);

1 += 2; //increment by 2. This 1is the same as 1 = 1 + 2

}

printf("\n\n"); //Throw in a couple of line returns, just to clean things up.

return 0;

EE 285 loops — 7

EE 285

Faren

~-40
-38
-36
-34
-32
-30
-28
~-26
-24
-22
~-20
-18
-16
-14
-12
~-10

heit

-40.
-38.
777779
-36.
-35.
-34.
-33.
-32.
-31.
-30.
-28.
-27.
-26.
-25.
-24.

-37

-23

Celsius

000000
888889

666668
555557
444443
333332
222221
111111
000000
888889
777779
666666
555555
444445
333334

-8 =-22.222221
-21.111111
-20.000000
-18.888889

-17.777779

~-16.666666

-6
-4
-2

-15.555555

~-14.444445

-13.333333
-12.222222
-11.111111
-10.000000
-8.888889
-7.777778
-6.666667

22
24
26
28
30
32
34
36
38
40
42
S
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120

Program ended with exit code: ©

-5.555555
-4.444445
-3.333333
-2.222222
-1.111111
0.000000
1.111111
2.222222
3.333333
4.444445
5.555555
6.666667
7.777778
8.888889
10.000000
11.111111
12.222222
13.333333
14.444445
15.555555
16.666666
17.777779
18.888889
20.000000
21.111111
22.222221
23.333334
24.444445
25.555555
26.666666
27.777779
28.888889
30.000000
31.111111
32.222221
33.333332
34.444443
35.555557
36.666668
37.777779
38.888889
40.000000
41.111111
42.222221
43.333332
44 .444443
45.555557
46.666668
47.777779
48.888889

loops — 8

For Loops

While loops are very general, and we could probably do everything we
need with them. However, when we are simply counting through a set
number of loops, we can use a short-hand notation for the while that
combines the counter initialization, the conditional statement, and the
counter increment in one statement. This is known as a “For” loop.

Using For loops helps cut down on mistakes of forgetting to initialize or
increment the counter.

The basic program structure:

int i; \\ the “counter”
For (1nitialize 1; conditional; incrment 1) {
Do something here inside the loop;

EE 285 loops — 9

For loop - example

#include <stdio.h>

int main(void) {

}

int 1;
float degrees_C;

printf("Fahrenheit Celsius\n\n");
for(i = -40; i <= 128; i k= 4){

degrees_C = 5.0/9.0*(1 - 32.0); //int is automatically converted to float
printf(" %d %f \n", i, degrees_C);

}
printf({ "\n\n"); //Throw in a couple of line returns, just to clean things up.

return 0;

Fahrenheit Celsius

EE 285

-40 -40.000000 4 -15.555555 44 6.666667 84 28.888889
-36 =-37.777779 8 -13.333333 48 B8.B888889 88 31.111111
-32 -35.555557 12 -11.111111 52 11.111111 92 33.333332

96 35.555557

-28 -33.333332 16 -8.888889 56 13.333333 1 7.77777
-24 -31.111111 20 -6.666667 60 15.555555 132 io.ooooog
-20 -28.888889 24 -4.444445 64 17.777779 108 42.222221
-16 -26.666666 28 -2.222222 68 20.000000 112 44.444443
-12 -24.444445 32 0.000000 72 22.222221 116 46.666668
-8 =22.222221 36 2.222222 76 24.444445 120 48.888889
-4 -20.000000 40 4.444445 80 26.666666

@ -17.777779

Program ended with exit code: ©

loops — 10

EE 285

O 00 SN O O 0N -

W W W W W W NN NN NN NN NN @O @@ O@ oo e s aa e
N 5 W N - O VOO NSO B WN - O VvV OO NOYSO; B DN - O

36

47
48

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void){

char response = 'y';
int x, y, answer;

srand((int)time(®)); //seed the random num generator

while(response != 'n'){

X
Yy

rand()%201 - 100;
rand()%201 - 100;

if(rand()%2){
printf("What is %d + %d?\n" , X, y);
printf("Answer: ");
scanf("%d", &answer);
if(answer == x + y){

printf("Nice. That's correct.\n\n"
}
else{
printf("Nope, that's not correct.
}
}
else{
printf("what is %d - %d?\n" , X, y);
printf("Answer: ");
scanf("%d", &answer);
if(answer == x - y){
printf("Nice. That's correct.\n\n"
}
else{
printf("Nope, that's not correct.
}
}

printf("Would you like to try another? ");
scanf(" %c", &response);
printf("\n");

}

printf("\nOK. See you next time.\n\n");

return 9;

)i

The correct answer is %d.\n\n", x+y);

);

The correct answer is %d.\n\n", x-y);

loops — 11

EE 285

O 00 SN O O B WO -

LW W W W W W W NN NN NN NN NN @G @O @O @O Wl d d
O N W N -G O VvV O NSO W N - O VvV OSSNSO ODD BN - O

37
38
39

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void){
char response = 'y';
int randomNum, myGuess;
srand((int)time(8)); //seed the random num generator
while(response != 'n'){
randomNum = rand()%10 + 1;
printf("I'm thinking of a number between 1 and 18. Try to guess it. ");\
scanf("%d", &myGuess);
while (myGuess < 1 || myGuess > 10){
printf("\nCan't you read? Your guess is outside the bounds. Try again.\n");
printf("Enter a guess between 1 and 19: ");
scanf("%d", &myGuess);
}
if(myGuess == randomNum){
printf("Good one! You guessed it.\n\n");
}
else{
printf("Wrong. The number was %d.\n\n", randomNum);
}
printf("Would you like to try again? ");
scanf(" %c", &response);
printf("\n");
}
printf("\nOK. See you next time.\n\n");
return 9;
}

loops — 12

