
EE 285 file I/O – �1

Writing to and reading from files

printf() and scanf() are actually short-hand versions of more
comprehensive functions, fprintf() and fscanf().

The difference is that fprintf() includes a file pointer in its arguments
to tell the program where the output should be printed. Similarly,
fscanf() has a file pointer that tells where where the input should be
obtained from.

The file pointer is a special data type used for reading and writing files.
It is defined as part of <stdio.h>. The syntax for declaring a file
pointer is

 FILE* dataFile; (or FILE *dataFile;)

 
where dataFile is the pointer to the external information.

EE 285 file I/O – �2

stdout and stdin
<stdio.h> has definitions for two special file pointers, stdout and
stdin. stdout points to the standard display device, usually your
computer screen. stdin points to the standard input device, usually the
keyboard.

These special pointers can be used with fprintf() and fscanf() to
write to the screen and read from the keyboard. For example:

 fprintf(stdout, “%lf”, 16.732);

will print 16.732 to the screen. Obviously, this behaves exactly like

 printf(“%lf”, 16.732);

Similarly

 fscanf(stdin, “%d”, &anInteger);

will read an integer typed from the keyboard and store in the integer
variable anInteger. Clearly, this behaves identically to

 scanf(“%d”, &anInteger);

There is probably not much need to use fprintf instead of printf and
fscanf instead of scanf, but it is good to know about these variations.

EE 285 file I/O – �3

External files
Writing to and reading from external files is another matter though.

First, we need to realize that the common format for external data files is
simple text. The data stored in the files is simply a one long string of
characters. It should be readable from any text editor. The fprintf
function will take care of converting an integer or a double (or any other
type of variable) into a corresponding string of characters to be written
into the file. Likewise fscanf will take a string of characters from a file
and convert them into the appropriate type of data to be stored within a
variable within the program.

We will need a file pointer to point to the file that you are writing to or
reading from.

To associate a file pointer to a particular file, we use the fopen function.
This function connects the file pointer to a specific file in the computer’s
file system and sets the operation to either read or write.

EE 285 file I/O – �4

When the program is finished reading or writing to the file, the
connection should be shut down using the fclose function. (Note: any
open file pointers will be closed automatically when the program
terminates with a return value of 0. However, good programming
protocol suggests that you care care of this explicitly within your
program.) Here is the syntax for writing:

 FILE* myWriteFile;

 myWriteFile = fopen(“fileNameOnDisk.dat”, “w”);

 //Use fprintf() to write some stuff to the file.

 fclose(mWriteFile);

And for reading a file:

 FILE* myReadFile;

 myReadFile = fopen(“fileNameOnDisk.dat”, “r”);

 //Use fscanf() to read some stuff from the file.

 fclose(mReadFile);

EE 285 file I/O – �5

Comments
• The file extension (like .dat) is optional, but it is probably a good idea.

• A commonly used file type is comma separated variables (.csv). These
files can be read by many other programs, like Excel. Of course, when
writing to something like a .csv file, it is your job to make certain that
the data is arranged in a manner that is expected for that file type.

• If fopen fails to make the connection with a specific file, the pointer is
set to NULL. It is always a good idea to check this before trying to do
any reading or writing.

• When writing to a file, if the the file does not exist, the operating
system will create a new file and make the connection to the file
pointer in the program. (Finding it on the HD may be a challenge.)

• When reading a file, the file must already exist. If it doesn’t, the fopen
function reports the problem by returning a NULL.

• In reading from a file, you will need to know how the data is
organized. You may need some mechanism to determine how much
data is in the file and to know when all of the data has been read.

EE 285 file I/O – �6

Xcode - where do files go?

Go the Xcode
preferences. (Under
the Xcode menu.) (Or
use the (shift-comma
key combination.)

If you are using
default settings, there
will be a file path
listed that tells you
where the written files
will go.

For example, if I have project titled "write_read_files", and have run a
program in that project, inside the "Derived Date Folder" another folder
will be created with a title something like "write_read_files-
fkymjkqzitfmfrcpvydtucruxdpd". The extra "gibberish" is appended so
that Xcode can keep track of different runs of the same program.

EE 285 file I/O – �7

Inside the particular project folder will be a folder called "Build". Inside
that is one called "Products" and inside that is another folder "Debug",
which holds two things in our case: an executable file called
"write_read_files" and the file that our program created —
"writeFile.dat". This is the default location to external files are written to
— and where files should be read from.

The entire file path is: "Users/
account/Library/Developer/
Xcode/DerivedData/Build/
Products/Debug/". Of course,
"account" will be the specific
account name set up on your
Mac.

EE 285 file I/O – �8

Using the defaults is OK, but rather unwieldy. You can change the
location of where the files go when compiling and running a program.
To change, go the Xcode preferences and choose the Locations tab at
the top. Click on the "Advanced…" button.

Select the "Custom"
option and choose
"Absolute" from the drop
down. In the "Products"
line, choose a different
location to write the files.
It can be anywhere.
Usually, when I'm
working hard on
programs, I have the
output go to the desktop.

EE 285 file I/O – �9

When you are all done working, it is probably a good idea to clean up
the desktop and change all settings back to the defaults.

Then folders start showing up on your desktop. The Debug folder holds
the files that are most immediately relevant. As you re-compile and re-
run the program, the new versions are re-written into Debug.

EE 285 file I/O – �10

Visual Studio - where do files go?
VS is a little less obtuse that Xcode about file locations.

When you create a project, you are given the location of where the
project files will be stored. The default location is a new folder — …
\source\repos\ — in your user space on the hard drive. This is where
your code files (main.c, etc) are stored and this is where files generated
by your programs are written to and where files used by your programs
are read from. It's pretty easy.

EE 285 file I/O – �11

For a specific example, I have a project EE285_project (the generic
project that I reuse for most EE 285 examples). In running one of the
example programs from these notes — you will see it a few slides from
now — a file is created and stored in this default location. The
complete path is

C:\Users\GT\source\repos\EE285_Project\EE285_Project\File_of_random_ints.dat

Of course, you can change the file location for a project at the time a
project is started.

EE 285 file I/O – �12

In C, writing and reading files is one of the places where errors that can
be exploited by hackers can occur. MSVS "helpfully" warns you about
this possibility when opening a file and provides an MS-only alternative
that is supposed to be "safer": fopen_s(). If you use the standard
fopen(), it is flagged as a fatal error when building the project. Of
course, this is quite annoying. You have two options: use their special
fopen_s() function or turn off the checking that flags fopen() as an
error.

Visual Studio - turning off certain "errors"

EE 285 file I/O – �13

To turn off the error checking:

1. Open the project properties window (last item under the project
menu or right-click on the project title on the "explorer" pane on the
left.

2. Click on the C/C++ expander triangle and select the Preprocessor
option.

3. In the first line — Preprocessor Definitions — change whatever is
there to: _CRT_SECURE_NO_WARNINGS.

4. This will tell the compiler to stop flagging legitimate commands as
errors.

See the screen shots on the next page.

Note that this change will only affect the current project. If you switch
projects or start a new project, you will have to do this again. (This is
one of the reasons why I tend to re-use the same project over and over
and store my various program text files in a separate place.)

EE 285 file I/O – �14

This is the Preprocessor window.

Make this change…

EE 285 file I/O – �15

// EE 285 - writing files - example 1

#include <stdio.h>

int main(void) {

 FILE* temperatureDataFile;
 double tempC, tempF;

 temperatureDataFile = fopen("temperature.csv", "w");

 if(temperatureDataFile == NULL){

 printf("Oops. Something went wrong in creating the file.");
 }
 else{

 for(tempF = -40; tempF <= 220; tempF = tempF + 2){

 tempC = 5.0 / 9.0 * (tempF - 32);
 fprintf(stdout, "%5.2lf, %5.2lf\n", tempF, tempC);
 fprintf(temperatureDataFile, "%5.2lf, %5.2lf\n", tempF, tempC);

}

 fclose(temperatureDataFile); //Close the file connection.
 }

 return 0;
}

Now some examples.
First us, let's use the old Fahrenheit to Celsius conversion program again,
but this time write the results to a file as well as to the console.

EE 285 file I/O – �16

Short chunks of the output. The left is from the console and the right is
the written file as viewed using a text editor. (BBEdit on a Mac in this
case.) They are identical, as we would expect.

EE 285 file I/O – �17

// EE 285 - writing files - example 2

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(){
 const int ROWS = 10, COLUMNS = 5;
 int i, j, rando;
 FILE* randomFile;

 srand((int)time(0));

 randomFile = fopen("File_of_random_ints.dat", "w");

 if(randomFile == NULL)
 printf("Oops. Something bad happened when creating the file.");
 else{

 for(i = 0; i < ROWS; i++){
 for(j = 0; j < COLUMNS; j++){
 rando = rand()%50 + 25;
 fprintf(randomFile, "%d ", rando);
 }
 fprintf(randomFile, "\n");
 }

 fclose(randomFile); //Close the file connection.
 }
}

EE 285 file I/O – �18

32 74 48 33 55
47 69 53 48 34
65 40 67 67 62
28 52 54 65 37
28 44 34 32 35
58 74 53 41 60
72 51 37 42 35
58 54 74 54 46
42 47 68 61 60
70 53 66 69 32

Below are the contents of the file "File_of_random_ints.dat" that was
created on the disk. View it with a text editor program.

EE 285 file I/O – �19

Reading files — fscanf()
• fscanf() uses a formatting string just like we seen before:  
%d, %5.3lf, %c, %s, etc.

• fscanf() reads one character at a time, and then goes to the next
character in the line.

• However, it reads in characters for each item until it hits a white space
or end-of-line character. For example, if you used  
fscanf(fileptr, "%s", name); to read the string  
"Ferd Baloneyhead", only the "Ferd" part would be put into
name. However, if the string was Ferd_Baloneyhead", the whole
string would be read into name.

• You can read multiple items with one fscanf(). For example, to
read in the first and last names above, you could use  
fscanf(fileptr, "%s %s", first, last); Then, in
reading in "Ferd Baloneyhead", "Ferd" would be put into the
string first and "Baloneyhead" into the string last.

EE 285 file I/O – �20

// EE 285 - reading files - example 1

#include <stdio.h>

int main(){
 const int ROWS = 10, COLUMNS = 5;
 int i, j, rando, sum = 0;
 FILE* readFile;

 readFile = fopen("File_of_random_ints.dat", "r"); //Open the file.

 if(readFile == NULL)
 printf("Oops. Something bad happened when creating the file.");
 else{

 for(i = 0; i < ROWS; i++){
 for(j = 0; j < COLUMNS; j++){
 fscanf(readFile, "%d ", &rando);
 printf("%d ", rando);
 sum = sum + rando;
 }
 printf("\n");
 }
 fclose(readFile); //Close the file connection.

 printf("\nThe total is %d and the average is %5.2lf.\n\n", sum, sum/50.0);
 }
}

EE 285 file I/O – �21

32 74 48 33 55
47 69 53 48 34
65 40 67 67 62
28 52 54 65 37
28 44 34 32 35
58 74 53 41 60
72 51 37 42 35
58 54 74 54 46
42 47 68 61 60
70 53 66 69 32

The total is 2580 and the average is 51.60.

Program ended with exit code: 0

Below is output seen on the screen.

Note that the read program had to know exactly how the data was
arranged in the file. Maybe that is known and will always be a constant.
But what if it's not? There are couple of simple ways to "tell" the reading
program what to expect. One is to put information at the top of the file.
In this case, we might put the number of rows and columns at the top of
the file. These can be used by the reading program to know how big the
"array" is.

EE 285 file I/O – �22

As an example, consider another version of the "file-writing" program.
This one also creates a bunch of random numbers and writes them to a
file in the form of a rectangular grid. However to really randomize
things, the program will make a randomly-sized grid of random numbers
— random number of column and random number of rows. (Whew!
That is a lot of randomness.) The number of rows is between 1 and 20,
the number of columns is between 5 and 25, and the values in the array
items are between 25 and 75. The array is created and then printed to
the console and to a file — random_randomness.dat. The written file
also includes the dimensions of the array, which are stored at the “top”
of the file. Example output is shown below.

EE 285 file I/O – �23

// EE 285 - writing files - example 2, version 2
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(){
 int rows, columns;
 int i, j, rando;
 FILE* writeFile;

 srand((int)time(0));
 rows = rand()%20 + 1;
 columns = rand()%21 + 5;

 writeFile = fopen("more_random_ints.dat", "w");

 if(writeFile == NULL)
 printf("Oops. Something bad happened when creating the file.");

 else{
 fprintf(writeFile, "%d %d\n", rows, columns);

 for(i = 0; i < rows; i++){
 for(j = 0; j < columns; j++){
 rando = rand()%50 + 25;
 fprintf(writeFile, "%d ", rando);
 printf("%d ", rando);
 }
 fprintf(writeFile, "\n");
 printf("\n");
 }

 fclose(writeFile); //Close the file connection.
 }
}

EE 285 file I/O – �24

34 60 58 46 67 72 43 60 41 51 74 55 55 25 40 29 41 43 73 33 54 67 56
73 26 25 26 26 60 64 51 37 59 47 37 38 36 74 39 52 54 55 52 59 58 40
67 29 26 50 46 64 71 70 63 48 30 45 52 25 34 61 35 74 37 65 42 70 72
43 50 60 47 31 65 61 44 40 30 61 47 27 62 29 50 71 34 56 73 53 39 65
33 55 58 45 36 33 37 46 69 68 51 25 31 68 29 30 50 47 35 34 33 37 61
58 65 35 53 61 32 29 71 51 58 28 46 25 71 53 30 34 64 36 35 59 61 47
65 69 53 33 45 59 61 47 57 50 27 66 40 64 48 51 48 50 56 72 43 35 25
Program ended with exit code: 0

7 23
34 60 58 46 67 72 43 60 41 51 74 55 55 25 40 29 41 43 73 33 54 67 56
73 26 25 26 26 60 64 51 37 59 47 37 38 36 74 39 52 54 55 52 59 58 40
67 29 26 50 46 64 71 70 63 48 30 45 52 25 34 61 35 74 37 65 42 70 72
43 50 60 47 31 65 61 44 40 30 61 47 27 62 29 50 71 34 56 73 53 39 65
33 55 58 45 36 33 37 46 69 68 51 25 31 68 29 30 50 47 35 34 33 37 61
58 65 35 53 61 32 29 71 51 58 28 46 25 71 53 30 34 64 36 35 59 61 47
65 69 53 33 45 59 61 47 57 50 27 66 40 64 48 51 48 50 56 72 43 35 25

This is what is printed to the console.

This is what is contained in the "more_random_ints.dat" that was
created on the disk. Note the row and column info at the top.

Then we need to modify the "file reading program" to use the row/
column provided within the file.

EE 285 file I/O – �25

// EE 285 - reading files - example 1, version 2
#include <stdio.h>

int main(){
 int columns, rows;
 int i, j, rando, sum = 0;
 double average;
 FILE* readFile;

 readFile = fopen("more_random_ints.dat", "r"); //Open the file.

 if(readFile == NULL)
 printf("Oops. Something bad happened when creating the file.");
 else{

 fscanf(readFile, "%d ", &rows); //Read the number of rows.
 fscanf(readFile, "%d ", &columns); //And columns.

 for(i = 0; i < rows; i++){
 for(j = 0; j < columns; j++){
 fscanf(readFile, "%d ", &rando);
 printf("%d ", rando);
 sum = sum + rando;
 }
 printf("\n");
 }
 fclose(readFile); //Close the file connection.

 average = sum/(double)(rows*columns);

 printf("\nThe total is %d and the average is %5.2lf.\n\n", sum, average);
 }
}

EE 285 file I/O – �26

34 60 58 46 67 72 43 60 41 51 74 55 55 25 40 29 41 43 73 33 54 67 56
73 26 25 26 26 60 64 51 37 59 47 37 38 36 74 39 52 54 55 52 59 58 40
67 29 26 50 46 64 71 70 63 48 30 45 52 25 34 61 35 74 37 65 42 70 72
43 50 60 47 31 65 61 44 40 30 61 47 27 62 29 50 71 34 56 73 53 39 65
33 55 58 45 36 33 37 46 69 68 51 25 31 68 29 30 50 47 35 34 33 37 61
58 65 35 53 61 32 29 71 51 58 28 46 25 71 53 30 34 64 36 35 59 61 47
65 69 53 33 45 59 61 47 57 50 27 66 40 64 48 51 48 50 56 72 43 35 25

The total is 7856 and the average is 48.80.

Program ended with exit code: 0

This is what is printed to the console by the reading program.

One other approach is to simply append an "end-of-file" value at the end
of the "good" data. This works if we don't really care that the data is
some sort "row/column" arrangement. The reading program would then
use a while loop to read in data from the file until it hits the "marker".
The marker would need to be something very distinct from the valid data
in the file, so that there would no chance of mis-interpreting its
meaning.

On the following page is a third version of the file-writing program. It
adds the number -100 at the end of the file as and end-of-file marker.

EE 285 file I/O – �27

// EE 285 - writing files - example 2, version 3
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(){
 int rows, columns;
 int i, j, rando;
 FILE* writeFile;

 srand((int)time(0));
 rows = rand()%20 + 1;
 columns = rand()%21 + 5;

 writeFile = fopen("even_more_random_ints.dat", "w");

 if(writeFile == NULL)
 printf("Oops. Something bad happened when creating the file.");
 else{
 for(i = 0; i < rows; i++){
 for(j = 0; j < columns; j++){
 rando = rand()%50 + 25;
 fprintf(writeFile, "%d ", rando);
 printf("%d ", rando);
 }
 fprintf(writeFile, "\n");
 printf("\n");
 }

 fprintf(writeFile, "%d\n", -100); //Write the "end-of-file" marker
 fclose(writeFile); //Close the file connection.
 }
}

EE 285 file I/O – �28

44 32 69 66 28 63 52 63 32 74 42 29 45 48 36 33 29 44 52 52
45 54 52 50 42 53 53 66 26 73 65 72 67 52 32 53 26 51 46 29
67 57 60 66 26 25 25 67 69 38 36 25 52 38 39 51 31 38 28 33
66 49 60 54 65 71 41 56 35 41 74 64 44 30 41 65 70 28 63 29
72 66 54 53 70 37 39 39 61 28 48 29 41 60 73 58 70 63 27 48
42 45 55 47 69 74 74 49 54 52 61 52 72 47 65 39 32 51 60 73
Program ended with exit code: 0

44 32 69 66 28 63 52 63 32 74 42 29 45 48 36 33 29 44 52 52
45 54 52 50 42 53 53 66 26 73 65 72 67 52 32 53 26 51 46 29
67 57 60 66 26 25 25 67 69 38 36 25 52 38 39 51 31 38 28 33
66 49 60 54 65 71 41 56 35 41 74 64 44 30 41 65 70 28 63 29
72 66 54 53 70 37 39 39 61 28 48 29 41 60 73 58 70 63 27 48
42 45 55 47 69 74 74 49 54 52 61 52 72 47 65 39 32 51 60 73
-100

This is what is printed to the console.

This is what is contained in the "more_random_ints.dat" that was
created on the disk. Note the "-100" at the end. Again, view this with a
text editor.

The reading program simply reads in a long string of numbers, while
watching for the -100 value — it stops reading when it gets to that point.
In the program, I printed the numbers to the console. Since there the
file gives no indication of the original row/column arrangement, I can
print the numbers however I want. I chose to print them in rows of 10.

EE 285 file I/O – �29

// EE 285 - reading files - example 2, version 3
#include <stdio.h>

int main(){
 int i = -1, rando, sum = 0, readCount = 0;;
 double average;
 FILE* readFile;

 readFile = fopen("even_more_random_ints.dat", "r"); //Open the file.

 if(readFile == NULL)
 printf("Oops. Something bad happened when creating the file.");
 else{

 fscanf(readFile, "%d ", &rando);

 while(rando != -100){ //Watch for end of file marker.
 sum = sum + rando;
 readCount++; //Also, need to keep track of how many.
 if(i++ < 9) //Print the numbers, 10 to a row.
 printf("%d ", rando);
 else{
 printf("\n%d ", rando); //After 9 items, print the 10th with \n.
 i = 0;
 }
 fscanf(readFile, "%d ", &rando);
 }
 fclose(readFile); //Close the file connection.

 average = sum/(double)readCount;

 printf("\n\nThe total is %d and the average is %5.2lf.\n\n", sum, average
);
 }
}

EE 285 file I/O – �30

44 32 69 66 28 63 52 63 32 74
42 29 45 48 36 33 29 44 52 52
45 54 52 50 42 53 53 66 26 73
65 72 67 52 32 53 26 51 46 29
67 57 60 66 26 25 25 67 69 38
36 25 52 38 39 51 31 38 28 33
66 49 60 54 65 71 41 56 35 41
74 64 44 30 41 65 70 28 63 29
72 66 54 53 70 37 39 39 61 28
48 29 41 60 73 58 70 63 27 48
42 45 55 47 69 74 74 49 54 52
61 52 72 47 65 39 32 51 60 73

The total is 6006 and the average is 50.05.

Program ended with exit code: 0

This is what the reading program printed to the console. Again, in this
case, the printing format is arbitrary.

