
EE 285 arrays – 1

Arrays

Consider a program that will keep track of quiz scores. (Perhaps for EE
201.) There are 10 quizzes, with a possible 10 points each. I’d like to
use a program to compute the total. Using what we have learned up to
now, we probably proceed by declaring 10 integer variables, and use 10
scanf()s to enter the scores. Once the scores are entered, we can
compute the total.

EE 285 arrays – 2

EE 285 arrays – 3

EE 285 arrays – 4

Now, we would like to throw out the lowest score, and keep only the best nine.
We can add some code to do that. Define one more integer variable, minQuiz,
initialized to 10. Then the code below can be inserted at the end of the previous.

EE 285 arrays – 5

EE 285 arrays – 6

However, this is terribly clunky and does not scale. A scanf() line is
needed for each score. Each variable has to be separately listed when
the scores are summed up. Each variable has a separate if statement
when finding the minimum. Tedious. The variable storage can be
scattered. This should not be a problem, because the compiler keeps
track of memory alloction, but it looks untidy.

address value variable
00000
00001 9 quiz8
00010
00011
00100 8 quiz1
00101
00110
00111
01000 3 quiz5
01001
01010
01011
01100 10 quiz10
01101
01111

address value variable
10000 9 quiz4
10001 9 quiz6
10010
10011 10 quiz3
10100
10101 9 quiz2
10110
10111 10 quiz7
11000
11001
11010
11011
11100
11101
11111 8 quiz9

EE 285 arrays – 7

We can streamline matters significantly by using arrays. Arrays are
blocks of variables that can be handled in a unified manner. The block
is given a single variable name, and the individual items are referenced
using an index.

When the array variable is declared, the total number of individual items
in the array is also specified. For example:

int quizScore[10];

creates a block of 10 contiguous memory spaces. The block is known as
quizScore and the individual items are accessed using the index.

quizScore[1] —> second item in the array

quizScore[6] —> seventh item in the array

quizScore[9] —> ninth item in the array

etc.

EE 285 arrays – 8

Niggling detail: Arrays in C are enumerated starting at index 0. So when
an array of 10 items is created, they are referenced by

 quizScore[0], quizScore[1], …, quizScore[9].

This will almost certainly cause you trouble at some point. Don’t forget
this annoyance and count carefully.

address value variable
00000
00001 9 quiz8
00010 8 quizScore[0]
00011 9 quizScore[1]
00100 10 quizScore[2]
00101 9 quizScore[3]
00110 3 quizScore[4]
00111 9 quizScore[5]
01000 10 quizScore[6]
01001 9 quizScore[7]
01010 8 quizScore[8]
01011 10 quizScore[9]
01100
01101
01111

address value variable
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11111

EE 285 arrays – 9

Note: If you don’t like counting from 0, you can avoid it by defining the
array to be one item bigger than needed. Then simply ignore the 0th
item and starting counting at 1. So if you had 10 items that you wanted
to use, you would define the array as having 11 items (numbered 0 to
10), and then simply use items 1 through 10 only.

This works fine, although you will be wasting memory space. This is
probably not a big deal in most cases. But either way, you have to
account for the fact that there is always a 0th item in the array.

What makes arrays powerful is that the index itself can be a variable.
And so while and for loops can be used to count through the range of
indices, sequentially accessing the items in the array.

The fact that the items are all grouped together in one block of memory
is also handy. Instead of using variable names, we can access the items
by referring to the memory location of the first item. This is known as
using a pointer. We will discuss in detail later.

Using arrays and loops together makes our long clunky program
compact and scalable.

EE 285 arrays – 10

EE 285 arrays – 11

EE 285 arrays – 12

Finally, with one small change, we can make program more scalable.
By changing one value, the program can handle different numbers of
quizzes.

