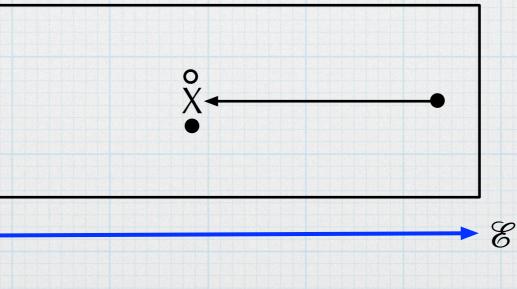
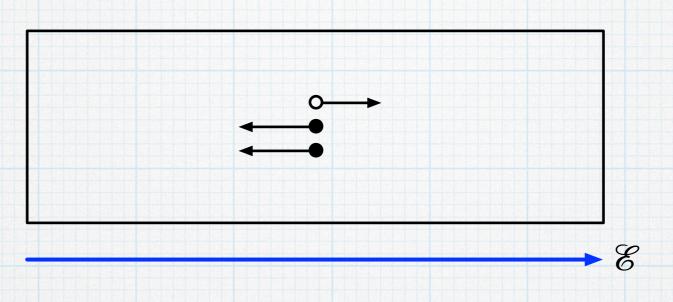

Zener diodes (avalanche multiplication)

In reverse-bias, we have been viewing the diode as behaving essentially like an open circuit. (Actually, a capacitor is a more accurate depiction.)

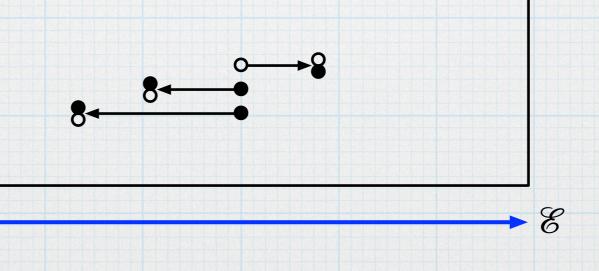
For the ideal diode, we assume that we can apply any reverse voltage and the reverse current will stay at the same tiny trickle, *-Is*.

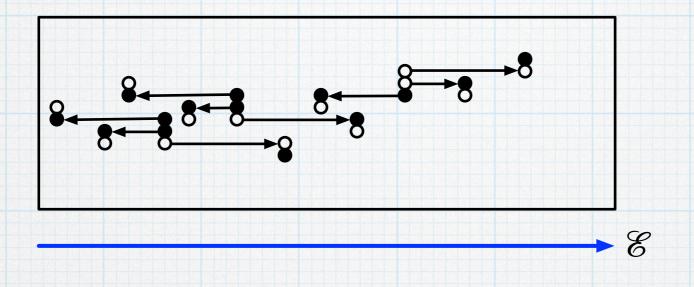
But for any diode, if the reverse voltage is increased enough, there will be a sudden and dramatic increase in reverse current. This happens at a very specific voltage and the i-v curve goes from being essentially horizontal (open-circuit) to essentially vertical (like a short-circuit, but with a specific voltage across it.)


It is almost as if a huge current is being created out of nothing. (Doesn't Kirchhoff have something to say about this?) In essence, that is exactly what is happening.

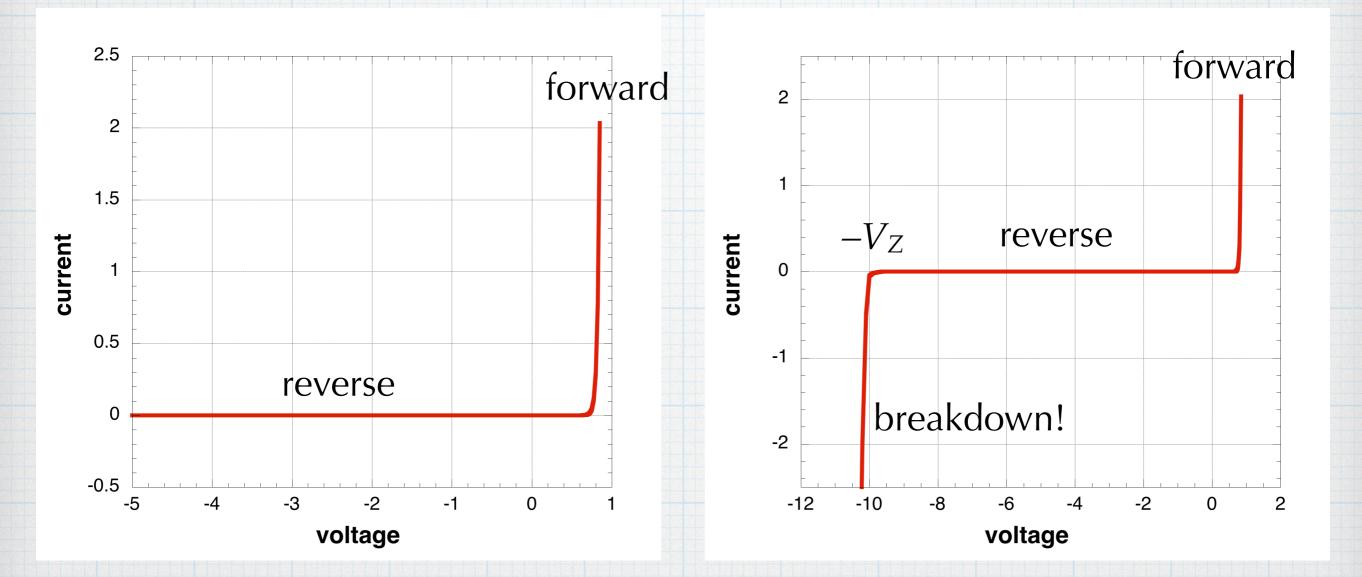

p-n junction under reverse-bias. The enhanced electric field is preventing the majority carriers (electrons on the left, holes on the right) from diffusing across depletion layer. Any minority carriers (holes on the left, electrons on the right) that come to the edge of the depletion layer will be swept across by the electric field. The trickle of minority carriers represents the reverse current of the diode. Watch one electron that has entered the depletion layer from the right. It is being accelerated by the electric field, picking up speed and energy.

If it can accelerate enough, it might gain enough energy to collide with one of the *neutral* atoms in the base and knock loose an electron. Of course, in breaking loose an electron, there will be corresponding hole. One carrier becomes three.


E


Now three carriers are being accelerated by the electric field.

Each of them can collide with and ionize an atom, resulting in nine carriers in the depletion layer.



The multiplication process continues and the number of carriers increases rapidly.

What started out as a single carrier crossing the depletion has exploded in a huge current. For obvious reasons, this is known as a carrier avalanche.

It occurs at a very specific threshold value for the electric field. Since the electric field depends on the applied reverse voltage, we see the current leap from essentially zero to a huge value with only a small change in the reverse voltage. The p-n junction can be designed to have the breakdown occur at a specific reverse bias.

This huge reverse current is known as "breakdown", but the diode isn't broken. It is perfectly OK, as long as the current isn't allowed to become too big. (Big current = big power dissipation = burned diode.)

Breakdown voltage

Even though the avalanching effect is driven by the electric field, the external effect is to see a huge increase in current at a specific reverse *voltage*. This is known as the Zener voltage, Vz, and the breakdown occurs at $-V_Z$.

Every diode will exhibit breakdown at some value of V_Z . Fortunately, a diode can be designed for a specific value of V_Z , ranging from about 2 V to over 1000 V.

For diodes meant to be used as rectifiers, having a breakdown current that flows when diode is supposed to be off would be bad – it defeats the purpose of the rectification. So rectifying diodes, like the 1N4006 (used in lab) are designed to have large V_Z .

Characteristic	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
Peak Repetitive Reverse Voltage	VRRM								
Working Peak Reverse Voltage	VRWM	50	100	200	400	600	800	1000	V
DC Blocking Voltage	VR								
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	560	700	V
Average Rectified Output Current (Note 1) @ T _A = 75°C	lo	1.0							A
Non-Repetitive Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load	I _{FSM}	30							A
Forward Voltage @ I _F = 1.0A	V _{FM}	1.0							V
Peak Reverse Current @T _A = 25°C		5.0					•		
at Rated DC Blocking Voltage @ T _A = 100°C	I _{RM} 50								μA
Typical Junction Capacitance (Note 2)	Ci	15 8						pF	
Typical Thermal Resistance Junction to Ambient	R _{0JA}	JA 100						K/W	
Maximum DC Blocking Voltage Temperature								°C	
Operating and Storage Temperature Range	T _{J.} T _{STG}	-65 to +150						°C	

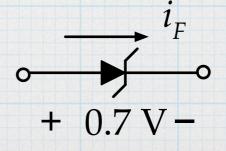
From the data sheet for 1N400x family of rectifying diodes.

Notes: 1. Leads maintained at ambient temperature at a distance of 9.5mm from the case.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V DC.

3. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.

Maximum Ratings and Electrical Characteristics @TA = 25°C unless otherwise specified


However, the breakdown can also be useful. The extreme steepness of the curve in the breakdown region can be used for *voltage regulation*.

Some diodes are designed to have a smaller V_Z (a few volts to a few tens of volts) to serve as voltage references in a circuit. When a diode is designed with the intention of using its reverse breakdown, it is known as a Zener diode.

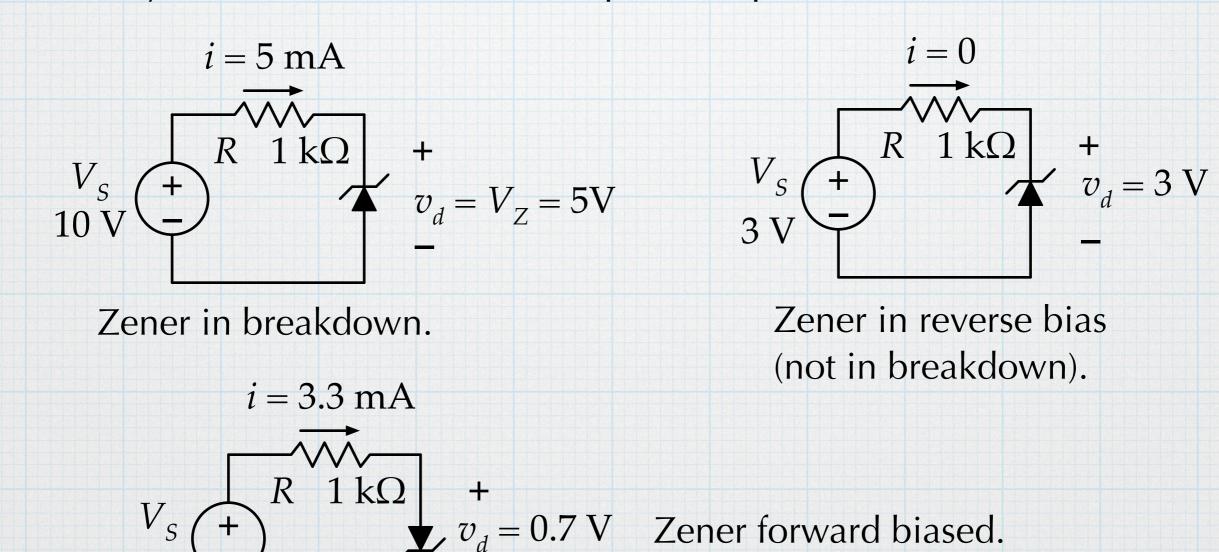
In the breakdown region, a Zener diode behaves very much like voltage source that is absorbing power.

Note that even though we will treat a Zener as behaving like a powerabsorbing voltage source, it is *not* a voltage source. It cannot be used to generate power that can be delivered to other parts of the circuit. When the diode is operating in the breakdown region, the current will always flow "backwards".

If a Zener is forward biased, it behaves like a conventional diode.

EE 230

Electrical Characteristics T_a = 25°C unless otherwise noted


From the data sheet for 1N47xy family of Zener diodes.

Device	V _Z (V) @ I _Z (Note 1)			Test Current	Max. Zener Impedance			Leakage Current		Non-Repetitive Peak Reverse	
	Min.	Тур.	Max.	l _Z (mA)	Z _Z @I _Z (Ω)	Z _{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	Ι _R (μ Α)	V _R (V)	Current I _{ZSM} (mA) (Note 2)	
1N4728A	3.135	3.3	3.465	76	10	400	1	100	1	1380	
1N4729A	3.42	3.6	3.78	69	10	400	1	100	1	1260	
1N4730A	3.705	3.9	4.095	64	9	400	1	50	1	1190	
1N4731A	4.085	4.3	4.515	58	9	400	1	10	1	1070	
1N4732A	4.465	4.7	4.935	53	8	500	1	10	1	970	
1N4733A	4 845	51	5.355	49	7	550	1	10	1	890	
1N4734A	5.32	5.6	5.88	45	5	600	1	10	2	810	
1N4735A	5.69	0. Z	6.51	41	2	700	1	10	3	730	
1N4736A	6.46	6.8	7.14	37	3.5	700	1	10	4	660	
1N4737A	7.125	7.5	7.875	34	4	700	0.5	10	5	605	
1N4738A	7.79	8.2	8.61	31	4.5	700	0.5	10	6	550	
1N4739A	8 6 4 5	91	9.555	28	5	700	0.5	10	7	500	
1N4740A	9.5	10	10.5	25	7	700	0.25	10	7.6	454	
1N4741A	10.45	11	11.55	23	8	700	0.25	5	8.4	414	
1N4742A	11.4	12	12.6	21	9	700	0.25	5	9.1	380	

Device	V _Z (V) @ I _Z (Note 1)			Test Current	Max. Zener Impedance			Leakage Current		Non-Repetitive Peak Reverse	
	Min.	Тур.	Max.	I _Z (mA)	Zz@Iz (Ω)	Z _{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	Ι _R (μΑ)	V _R (V)	Current I _{ZSM} (mA) (Note 2)	
1N4743A	12.35	13	13.65	19	10	700	0.25	5	9.9	344	
1N4744A	14.25	15	15.75	17	14	700	0.25	5	11.4	304	
1N4745A	15.2	16	16.8	15.5	16	700	0.25	5	12.2	285	
1N4746A	17.1	18	18.9	14	20	750	0.25	5	13.7	250	
1N4747A	19	20	21	12.5	22	750	0.25	5	15.2	225	
1N4748A	20.9	22	23.1	11.5	23	750	0.25	5	16.7	205	
1N4749A	22.8	24	25.2	10.5	25	750	0.25	5	18.2	190	
1N4750A	25.65	27	28.35	9.5	35	750	0.25	5	20.6	170	
1N4751A	28.5	30	31.5	8.5	40	1000	0.25	5	22.8	150	
1N4752A	31.35	33	34.65	7.5	45	1000	0.25	5	25.1	135	
1N4753A	34.2	36	37.8	7	50	1000	0.25	5	27.4	125	
1N4754A	37.05	39	40.95	6.5	60	1000	0.25	5	29.7	115	
1N4755A	40.85	43	45.15	6	70	1500	0.25	5	32.7	110	
1N4756A	44.65	47	49.35	5.5	80	1500	0.25	5	35.8	95	
1N4757A	48.45	51	53.55	5	95	1500	0.25	5	38.8	90	
1N4758A	53.2	56	58.8	4.5	110	2000	0.25	5	42.6	80	

9

Like a regular diode in forward bias, the Zener operation in breakdown must have some means to prevent the current from becoming too big. Usually this is done using a protection resistor in series. If there is enough reverse voltage in a circuit, the Zener will go into breakdown. The voltage across the Zener (from cathode to anode) will be V_Z and the current will be determined by the limitations imposed by the attached circuitry. The Zener used in the simple examples breaks down at 5 V.

EE 230

Example 1

Analyzing circuits that have Zener diodes uses the same basic approach as regular diodes except that now there is a third option – breakdown. Generally, a circuit would not have a Zener that is intended to used in forward bias, so it is reasonable to limit the initial "guessing" to "off" or "breakdown".

For the circuit below, find v_{R3} and i_z . The Zener diode has a breakdown at 6 V. The resistors are all 1 k Ω .

$$V_{s} + i_{z} + v_{z} + k_{3} + v_{R3} + v_{R3$$

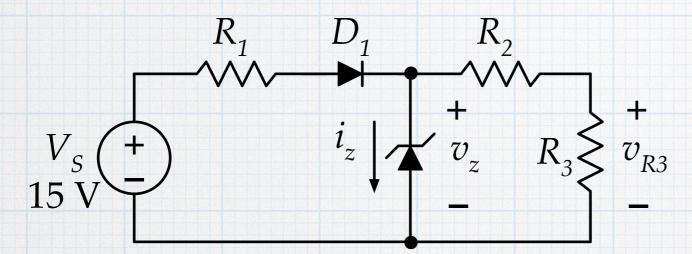
Since $V_S > V_Z$, the Zener is probably in breakdown, so v_Z = 6 V.

Then we can use a voltage divider to find v_{R3} .

$$i_{z} = i_{R1} - i_{R2}$$

$$v_{R3} = \frac{R_{3}}{R_{3} + R_{2}} v_{z} = \frac{v_{z}}{2} = 3 \text{ V}$$

$$i_{R1} = \frac{V_{S} - 0.7V - V_{Z}}{R_{1}} = 8.3 \text{ mA}$$

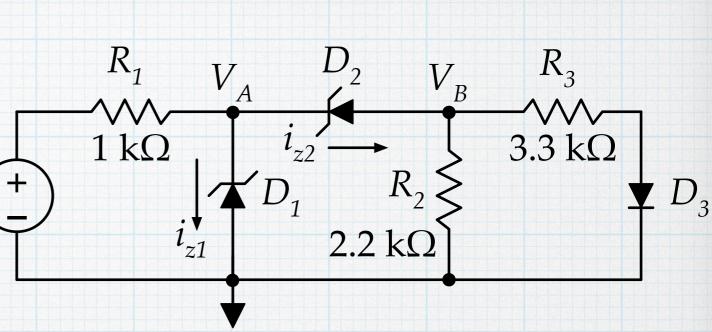

$$i_{R2} = \frac{V_{Z}}{R_{2} + R_{3}} = 3 \text{ mA}$$
So $i_{z} = 5.3 \text{ mA}$.

Zener diodes - 11

Example 2

EE 230

Repeat the previous example for $V_s = 25$ V and $V_s = 5$ V.


Since $V_S > V_Z$, the Zener is probably in breakdown, so v_Z = 6 V (still), $v_{R3} = 3$ V (still), and $v_{R2} = 3$ mA (still).

$$i_{R1} = \frac{25 \text{ V} - 0.7 \text{V} - 6 \text{ V}}{R_1} = 18.3 \text{ mA}$$
 So $i_z = 15.3 \text{ mA}$.

If $V_s = 5$ V, there is not enough source voltage to turn on both D_1 and the Zener. Assume that the Zener is off, so $i_z = 0$.

Example 3

For the circuit at right, find i_{z1} and i_{z2} for the cases of $V_S =$ 15 V, 8 V, and 4 V. Zener $D_1 V_S$ has a breakdown at 10 V and D_2 has a breakdown at 5 V.

 $V_{S} = 15$ V.

There is enough source voltage so that D_1 should be operating in break down, so that $V_A = 10$ V. With $V_A = 10$ V, there is enough voltage so that D_2 should also be in break down, meaning that $V_B = 10$ V – 5 V = 5 V. Finally, with $V_B = 5$ V, D_3 should be in forward bias.

Then: $i_{R3} = (5 \text{ V} - 0.7 \text{ V})/(3.3 \text{ k}\Omega) = 1.30 \text{ mA}.$

 $i_{R2} = (5 \text{ V})/(2.2 \text{ k}\Omega) = 2.27 \text{ mA}.$

 $i_{z2} = i_{R2} + i_{R3} = 3.57 \text{ mA}$

 $i_{R1} = (15 \text{ V} - 10 \text{ V})/(1 \text{ k}\Omega) = 5 \text{ mA}.$

 $i_{z1} = i_{R1} - i_{z2} = 1.43 \text{ mA}$

 $V_S = 8 \text{ V}.$

Now there is not enough source voltage to break down D_1 , so we don't yet know V_A . However, there should be sufficient voltage that D_2 is in break down, in which case $V_B = V_A - 5$ V. We can guess that D_3 will also be in forward bias, but we should check afterwards.

Note: with D_1 off, $i_{R1} = i_{z2} = i_{R2} + i_{R3}$.

$$\frac{V_S - V_A}{R_1} = \frac{V_S - (V_B + V_{Z2})}{R_1} = \frac{V_B}{R_2} + \frac{V_B - 0.7V}{R_3}$$

After a bit of algebraic grunt work, we find $V_B = 1.59$ V and so $V_A = 6.59$ V.

Then: $i_{R3} = (1.59 \text{ V} - 0.7 \text{ V})/(3.3 \text{ k}\Omega) = 0.27 \text{ mA} \rightarrow \text{confirming } D_3 \text{ is on.}$

 $i_{R2} = (1.59 \text{ V})/(2.2 \text{ k}\Omega) = 0.72 \text{ mA}.$

 $i_{z2} = i_{R2} + i_{R3} = 0.99 \text{ mA}$

 $V_S = 4 V.$

There is not enough voltage to turn on either Zener, so there is no path for any current to flow. This is a dead circuit.