
bareduino – 1

Bareduino
As a first step towards incorporating an Atmega328 controller into a project, let’s
prototype a bare-bones version of an Arduino.

Saves a little money. You can configure the hardware exactly the way that you
want. Plus, it’s fun!

bareduino – 2

Arduino Uno

Atmega 328

power (9 V
+ regulator)

oscillator
crystal

I/O connectors

I/O connectors

USB

reset

blinky
LEDs

ICSP

Recall the basic layout of the hardware. The items with red outlines are
essential. (The reset might be considered essential and we may choose to add
the ICSP interface.)

bareduino – 3

Bareduino
Boil the hardware down to the bare minimum.

• Atmega 328

• voltage regulator (to run off a 9-V battery)

• quartz crystal and capacitors for the clock

• pull-up resistor on the reset pin.

Everything else is gone, although we might consider adding some optional items

• Momentary switch for reset.

• ICSP header for programming

• LED power indicator

• Header pins, terminal blocks, or other types of wiring connencors.

bareduino – 4

Part Digi-Key Price Comment

proto-board 1738-1000-ND 1.52 cheap
Atmega 328 ATMEGA328P-PU-PN 1.91 not programmed

28-pin socket ED3050-5-ND 0.315 good enough
7805 regulator 497-1443-5-ND 0.426 5-V linear

0.33 µF capacitor 445-5263-ND 0.223 for regulator
0.1 µF capacitor BC2665CT-ND 0.187 for regulator

crystal CTX1085-ND 0.30 16 MHz
22 pF capacitors

(2)
BC1005CT-ND 0.348 need 2 for crystal

10 kΩ resistor CF14JT10K0CT-ND 0.029 for re-set pin

red LED 160-1853-ND 0.24 for blinking!

150 Ω resistor CF14JT150RCT-ND 0.029 for LED

battery strap 36-84-4-ND 0.49 for 9-V battery
6.02

Bill of Materials

Note the you will also need a 9-V battery to serve as the DC voltage
source. These are the prices if buying in large quantities. Buying one or
two at time will be about 10% more expensive.

http://www.digikey.com/product-detail/en/dfrobot/FIT0099/1738-1000-ND/6588422
http://www.digikey.com/product-detail/en/microchip-technology/ATMEGA328P-PN/ATMEGA328P-PN-ND/2357094
http://www.digikey.com/product-detail/en/on-shore-technology-inc/ED281DT/ED3050-5-ND/4147600
http://www.digikey.com/product-detail/en/stmicroelectronics/L7805CV/497-1443-5-ND/585964
http://www.digikey.com/product-detail/en/tdk-corporation/FK24X7R1H334K/445-5263-ND/2256743
http://www.digikey.com/product-detail/en/vishay-bc-components/K104K10X7RF5UH5/BC2665CT-ND/2356879
http://www.digikey.com/product-detail/en/cts-frequency-controls/ATS16B/CTX1085-ND/2640031
http://www.digikey.com/product-detail/en/vishay-bc-components/K220J15C0GF5TL2/BC1005CT-ND/286627
http://www.digikey.com/product-detail/en/stackpole-electronics-inc/CF14JT10K0/CF14JT10K0CT-ND/1830374
http://www.digikey.com/product-detail/en/LTL2R3KRD-EM/160-1853-ND/2675133
http://www.digikey.com/product-detail/en/stackpole-electronics-inc/CF14JT150R/CF14JT150RCT-ND/1830603
http://www.digikey.com/product-detail/en/keystone-electronics/84-4/36-84-4-ND/304013

bareduino – 5

Programming
Building microcontroller hardware doesn’t have much purpose without
having software loaded on the microcontroller to provide the
functionality.

A primary consideration in deciding the best path to loading software
onto the controller is the question of how often the software will be
changed.

If the project is “one and done”, meaning that the software will never be
changed once it is loaded onto the controller, then it is probably easiest
to program the chip before installing it onto the board. The
programming can be with the chip installed in the Arduino board. Once
the software is installed, the programmed chip can be transferred to the
socket on the bareduino.

If the software is under continued development, then frequently
swapping the chip back and forth between the Arduino and bareduino
is probably not practical. In that case, it would be better to include an
ICSP header on the bareduino and use a programmer interface to load
the software. This approach is described more fully in a companion set
of slides describing the programming process.

bareduino – 6

For our initial operation of the bareduino, we will start by using the
ATmega328 chip from the Arduino bard and make use the “program
and swap” method.

Caution: Swapping chips from board to board greatly increases the
likelihood of something bad happening. Removing the chip from the
socket is a bit tricky, and requires some gentle but firm prying with a
screwdriver. If you are not careful, you risk bending pins or poking
holes in your finger tips. Also, there is risk of wrecking the chip with
electrostatic discharge or bad wiring. Be careful!

So the initial step is write a simple Arduino program on the that blinks
an LED (or has some simple external function). We can use the “blink”
program that flashes on LED on pin 13. Or write our own the flashes on
LED somewhere.

On the next slide is a nearly identical program for flashing an LED on
any pin.

bareduino – 7

int high_time = 1000;
int low_time = 1000;
int led_pin = 6;

void setup() {
 pinMode(led_pin, OUTPUT); // initialize the output pin
}

void loop() {
 digitalWrite(led_pin, HIGH); // turn on the LED
 delay(high_time); // wait
 digitalWrite(led_pin, LOW); // turn off the LED
 delay(low_time; // wait
}

Load the desired program into Arduino. And then test it to make certain
that the blinking thing blinks!!

We will move the ATmega chip from the board later in the process.

bareduino – 8

Bread-boarding
It’s always a good idea to bread-board your hardware before soldering
together a prototype. It’s much easier to de-bug a bread board than a
soldered circuit.

Gather your parts.

bareduino – 9

Set up the power. The battery provides approximately 9 V and the 7805
regulator in turn gives a steady 5 V. The input is 9 V and the output is 5 V.

The capacitors provide stability — 0.33 µF between the input and
ground and 0.1µF between the output and ground.

The red lead of the battery connector is the positive input voltage and
the black lead goes to ground

bareduino – 10

It’s a good idea to test the regulator output before going too far.

bareduino – 11

Add the controller. We need a pin mapping so we know how “Arduino”
translates into Atmega328.

Note: Atmega328 has same pin configuration as Atmega 168.

bareduino – 12

Pins 8 & 22 → ground (green wires)
Pins 7 & 20 → 5 V (yellow wires)
Pin 1 → 5 V through a 10 kΩ resistor.

Basic power connections
Move the Atmega328. Make sure the power is off and carefully pry the
chip out of Arduino socket. Install it into the proto board and hook up
the power pins.

bareduino – 13

Oscillator crystal and the rest

The crystal goes between pins 9 & 10, and there are two 22 µF
capacitors – one from each pin to ground.

Add the oscillator crystal and capacitors.

bareduino – 14

Apply power and check the oscillator waveform. Note that the
frequency is 16 MHz, as expected for the crystal used.

bareduino – 15

LED (pick your favorite color) connected to chip pin 19 (Arduino output
13) through a limiting resistor.

And the LED and the pull-up resistor.

bareduino – 16

Fire it up!
Apply the power. (Attach the battery lead.) If everything was connected
properly, the sketch should start up and the light should blink.

“Bareduino!!”

It blinks!

bareduino – 17

Perf board version - step by step

Solder the 28-pin socket to the perfboard. It can be placed anywhere
on the board, depending on the other components that you might be
connecting. For this simple application, placing it in the center is just
fine.

Front (component side) Back (solder side)

bareduino – 18

Solder in the 5-V regulator (7805).
It can go anywhere. Again, if you
have many other components that
will be added, Then add the
capacitors and battery strap.

In (9 V)
ground

Out (5 V)

Solder connections
for the regulator
and capacitors.

Front

Back

bareduino – 19

Connect pins 7 and 20 to 5 V for power. The wires are soldered to the
pins on the back side.

bareduino – 20

Connect pins 8 and 22 to ground. 8 is connected to 22 on the back
side. I made a “ground line” running down the center. Then did
“solder blobs” to the two ground connections on the chip.

solder “blobs” between ground
line and chip ground connections

Ground line
connected to regulator
ground. Not
necessary, but can be
handy for connecting
other components to
ground.

bareduino – 21

Add the pull-up resistor for the reset — from pin 1 to 5 V. (Any 5 V
node is fine.)

bareduino – 22

The crystal goes between pins 9 and 10.

Front Back

bareduino – 23

And the two 22-pF capacitors — from pin 9 to ground and pin 10 to
ground.

Front

Back

Connections to crystal

ground via
green wire

bareduino – 24

Finally, add the LED. For our overly simple application of a blinker (using
the canned example program): a 150-Ω limiting resistor is connected to
pin 19 (which is known as pin 13 in Arduino code) and the LED then
connects from the resistor to ground. Get the LED polarity correct! (It’s
easily checked. Loosely connect the LED to the resistor — don’t solder it.
Then apply 5 V (or the 9 V battery) to the combination, positive on the
resistor side and negative on the diode. If you lights up, you’re good. If it
stays dark, you have a problem.)

Front Back

Resistor
to pin 19

LED to
ground line

Resistor
to LED

bareduino – 25

Plug in the programmed chip and hook up the battery. If all the
connections are good, it should work!

bareduino – 26

A few extra thoughts
• It cannot be emphasized enough: prototype your system before soldering things

together. Of course, the Arduino board itself is the ultimate prototyping tool. It’s
whole purpose is to make it easy change both hardware and software. But once
you have settled on a design and want to make it permanent, you don’t want to tie
up your (relatively) expensive Arduino to do something mundane like measuring
the temperature and operating a switch. Or blinking an LED on and off.

• You can buy Atmega328 chips that have a boot loader already installed, saving you
the “trouble” of installing yourself. (Not that much trouble, really.) Many places
offer them, but they tend to cost around $5 per chip, which is a pretty big markup.
(Or so it seems to me.)

• Adafruit sells some nice stickers that can be affixed to the top of the chip to
indicate the Arduino names for each of the pins. You can get 10 stickers for $3.00.
https://www.adafruit.com/products/554 . Or just make your own.

• There are nicer perf-boards available that might make building the circuit easier.
The ones used here were super-cheap. I can put together a list of perf-boards that I
like to use.

• Two ways to extend on what we learned with the bare-duino exercise: (1) moving
to other controller chips, either bigger or smaller and (2) switching to the Atmel
programming tools rather than using the (somewhat limited) Arduino software
“IDE”.

https://www.adafruit.com/products/554

