
EE 285 Arduino – �1

digitalRead()

Now we would like to get information into the micro-controller. A first
step in the direction is to use the digital pins to a digital measurement of
the voltage applied to a pin.

A digital measurement is rather crude in that it only determines if the
voltage on the pin is HIGH or LOW. HIGH and LOW are measured with
respect to 2.5 V — i.e. halfway between 0 and 5 V. If the voltage on a pin
is less than 2.5 V, then it is measured as being LOW, and if it is higher than
2.5 V, then it is HIGH. If it happens to be exactly 2.5 V, then the micro-
controller will probably be confused and it might indicate either result.

Although the measurement is binary, this is often enough to make
decisions about the external environment.

.

EE 285 Arduino – �2

The first step in using digitalRead is to use pinmode() to set the pin
function as an INPUT.

 pinmode(8, INPUT);

To read the input, use the digitalRead function, which returns an
integer value, either 0 or 1 (LOW or HIGH).

 inPut = digitalRead(8);

It’s that easy.

For further details about digitalRead check the Language Reference.

Important note: pinmode() commands are not restricted to being in
the setup() function. You can change the modes as the main part of
the program is repeating in the loop() portion.

EE 285 Arduino – �3

Example - photoresistive light sensor

A photoresistor is a very simple type of light
detector. It consists of a resistor made with a
semiconducting material — cadmium sulfide
(CdS) or similar — which is exposed to ambient
light. The semiconducting material can absorb
the incident photons, which create extra charge
carriers (electrons and holes). As the charge
carrier concentration increases, the resistance
will go down. In essence, this is a light-
dependent variable resistor.

A photoresistor can exhibit a very large change in resistance value for a
modest change in the ambient light. This makes it nicely suited for use
in digital decision making: Is it day or night? Are the room lights on or
off?

EE 285 Arduino – �4

A photoresistor can be used with a fixed
resistor in a simple voltage divider
arrangement to provides a voltage that
changes with incident light.

gnd

R1
VS = 5 V

RPR

vpin

vpin =
RPR

RPR + R1
VS

As the photoresistor resistance
changes with variations of the
incident light, the voltage
across the photoresistor change
accordingly.

EE 285 Arduino – �5

lightdark

For the photoresistor used here (PDV-9002-1 from Luna optoelectronics,
included in EE lab 230 kits). The dark resistance is > 150 k!. In typical
room light, it measures about 15 k!. Using it with a 33-k! fixed resistor
to make a simple voltage divider with a 5-V supply, the dark and light
voltages are measured as shown below. The difference between dark
and light will be easily discernible using a digital measurement.

EE 285 Arduino – �6

We can use the sensor input to
initiate some action. In this
case, we will simply turn on an
LED when it is dark.

The photoresistor voltage is
connected to pin 7, which is
configured as an input. The
LED is connected to pin 8 —
configured as an output — with
a 220-Ω limiting resistor.

The setup is straight-forward. In
the loop, the voltage on the
sensor is checked each time
through the loop. If the voltage
is high (meaning that the room
is dark), the LED is turned on.
Otherwise it is set to be off.

EE 285 Arduino – �7

Room light is incident on
the sensor, so the LED is
turned off.

No light hitting the sensor,
so the LED is turned on.

Of course, the micro-
controller can initiate
many different actions
based on the sensor input.

EE 285 Arduino – �8

Here is a slight variation on the previous program. It is not necessary to
set the value of the output pin every time through the loop. The only
time when needs to be set is when the input changes. By using an extra
variable, we can keep track of the current input state and watch for when
the input changes. Once a change at the input has been detected, then
the output can be changed.

This program functions similar to
the previous one, but it changes
the output only when the sensor
value changes. The variable
currentSensorValue has the
current light on/off state. Each
time through the loop, the sensor
value is checked —
checkSensorValue — and if this
is different than
currentSensorValue, the output
is flipped, and
currentSensorValue is updated.

EE 285 Arduino – �9

Switches

ground

RPU
VS = 5 V vswitch = 5 V

ground

RPU
VS = 5 V vswitch = 0 V

A simple mechanical switch can be combined with a "pull-up" resistor to
create a voltage divider whose value can be varied between zero and VS.

The value of RPU can be
anything, but in order to limit
the current drawn when the
switch is closed, make it bigger.
A value of 10 k! — leading to a
current of 0.5 mA is probably
reasonable.

EE 285 Arduino – �10

The program using the switch is
similar to the previous one with
the sensor. The program keeps
track of the current state of the
switch. Each time through the
loop, the switch voltage is
measured and compared to the
current stored value. When a
change in switch voltage is
detected (because the switch
has either opened or closed),
the LED is turned on or off in
response and the current switch
state is updated.

Recall that the switch is voltage
is HIGH when the switch is
open and LOW when the
switch is closed.

EE 285 Arduino – �11

De-bouncing

EE 285 Arduino – �12

In the loop:

1. check the switch value.

2. Is it different than the
current value? If not, then do
nothing.

3. If yes, then wait a bit for any
switch bounce to subside.
(debounce time)

4. Check the switch value
again. If it is the same as
initial measurement, then
this is a valid switch change.
Take the desired action - in
this case, change the state of
the LED

