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Thevenin / Norton equivalent circuits
We have seen many instances where we can 
take elements in a part of a circuit and 
combine them in some fashion to make an 
equivalent circuit. With respect to the two 
terminals, the two versions behave identically. 
Anything attaching to the two terminals will 
not be able to tell the difference.

Req = R1 + R2 + R3 R4

+
– VS

R
IS Rsame

VS = ISR

IS1 IS2 IS1+IS2
same

R3 R4
R1

R2

same Req

+
–VS = 0

short circuit

IS = 0

open circuit

+
–

+
–

VS1

VS2

+
– VS1+VS2

same
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We can generalize this idea of equivalency by saying that any linear 
circuit that has a connection defined by two nodes — a port — can be 
simplified to an equivalent circuit consisting of a voltage source and a 
resistor in series. This remarkable result was proven by French engineer 
Leon Thevenin in 1883, and so we call the simplified voltage-source / 
resistor combination the Thevenin equivalent. 

Terminology: A port is defined by two nodes in a circuit. In principle, 
the port could be any random pair of nodes, but usually the port 
represents a place where we intend to connect another circuit. 
Common examples are the ubiquitous 3.5-mm stereo audio jack and 
the even more ubiquitous USB plug. (Actually, both examples have 
multiple ports in a single package, but never mind that for now.) 

This view that every linear circuit has an effective voltage (which could 
be zero!) and an effective resistance completely changes the way that 
we look at circuits. 

+
–VTh

RTh
Linear 

circuit with 
port a-b

a

b

same!!

a

b
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If we consider the output port of some audio generating gizmo — a 
phone or whatever — and want to hear the sound, we must connect a 
speaker of some sort — headphones or a loudspeaker on the shelf. If we 
look at the circuitry that generates the audio signal, it appears rather 
bewildering to a novice. Yet, Thevenin says that all of that complication 
can be boiled down to two components. And the speaker itself has a 
Thevenin equivalent, which is just a single resistor, since the speaker 
does not generate a voltage on its own.  

+
–Va

Ra
Rsp

audio source speaker

+
–Va

Ra
Rsp

music!!
audio circuit

speaker
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Norton equivalent
Sometime later (c. 1926), a similar equivalency idea was put forth by 
Edward Norton working at Bell Labs. His idea was nearly identical to 
Thevenin’s, but Norton used a parallel combination of current source 
and resistor, rather than Thevenin’s series arrangement. (Apparently 
Norton was not aware of Thevenin’s earlier proof.)

IN RN

Linear 
circuit with 

port a-b

a

b

same!!

a

b

Having seen source transformations earlier, this is not surprising to us — 
Norton is simply the source transformation of Thevenin. And vice-versa. 

We might recall that we never actually proved that source 
transformations were valid. We inferred that they were equivalent using 
examples.
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Linear 
circuit with 

port a-b

a

b

+
–VTh

RTh
a

b

IN RN

a

b

Using Thevenin and Norton, we have 
proof of the validity of source 
transformations. If Thevenin’s voltage-
source/resistor series combination is 
equivalent to the original circuit, and 
Norton’s current-source/resistor 
parallel combination is equivalent to 
the original circuit, then the two must 
also be equivalent to each other.

Some texts make a big deal about differentiating between Thevenin and 
Norton. We will take the view that they are simply two manifestations 
of the same idea. As soon as we know one equivalent circuit, we 
immediately know the other through source transformation, and in any 
particular case, we use the version that is most suitable to the problem.

Thevenin Norton

VTh = InRn

RTh = Rn
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R2

a

b

+
–VS

R1

IS

R2+
–VS

R1

IS RL
–

+
vRL

iRL

To further illustrate the equivalence idea, consider the circuit shown 
below — basically, it is the familiar “two-source, two-resistor” circuit 
with a port defined by the two nodes a and b. Attach various load 
resistors to the port, and calculate the resulting voltage across the load 
along with the current and power. The results are given in the table.

10V 4 mA

10 kΩ

10 kΩ

RL vRL iRL PRL

50 Ω 0.2475 V 4.95 mA 1.225 mW

500 Ω 2.273 V 4.55 mA 10.33 mW

5 kΩ 12.5 V 2.5 mA 31.25 mW

50 kΩ 22.73 V 0.455 mA 10.33 mW

500 kΩ 24.75 V 49.5 µA 1.225 mW
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RL vRL iRL PRL

50 Ω 0.2475 V 4.95 mA 1.225 mW

500 Ω 2.273 V 4.55 mA 10.33 mW

5 kΩ 12.5 V 2.5 mA 31.25 mW

50 kΩ 22.73 V 0.455 mA 10.33 mW

500 kΩ 24.75 V 49.5 µA 1.225 mW

+
–VTh

RTh
a

b
 25 V

5 kΩ

+
–VTh

RTh

RL
–

+
vRL

iRL

Now consider the simple source and resistor circuit shown below. Attach 
the same load resistors and calculate the resulting voltages, currents, and 
powers. The results are shown in the table. The results from this simple 
circuit are identical to those from the circuit on the previous page. In 
terms of a load that is attached at the port, the two circuits are 
indistinguishable. We can use the equivalent in place of the original and 
have identical results. This is the idea that was proven by Thevenin.
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Determining the Thevenin/Norton values
Now comes a crucial question: Given a “black box circuit”, how do we 
determine VTh and RTh? (Or IN and RN ?) 

Since there are two components in an equivalent circuit, we will need 
to do two measurements (if working in the lab) or two calculations (if 
working with pencil and paper) and then determine the Thevenin or 
Norton values from those results. There is no easy way out — there must 
be two independent measurements/calculations. Fortunately, we have 
already learned the analysis and lab skills needed. 

We use the Thevenin equivalent as a guide in determining the process. 
The technique involves nothing more than attaching two different loads 
to the port and then measuring or calculating the resulting voltages or 
currents at the port. 

We will illustrate the idea using random values for the two loads. Then 
we will sharpen the technique by having the port be open circuited and 
then short circuited. 

First consider what happens with a simple source + resistor circuit in 
which we don’t know the values of the source or the resistor.
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1. Attach a load resistor, RL1.  
Measure resulting v1.

2. Attach another, different load 
resistor, RL2.  Measure resulting v2.

i1 =
1

RL1

1
RL1

+ 1
RN

IN
i2 =

1
RL2

1
RL2

+ 1
RN

IN

Knowing v1 and v2, it is a simple matter to use the two equations to 
solve for the two unknowns, VTh and RTh. 

We could also use the same approach with a Norton equivalent:

+
–VTh

RTh

R1
–

+
v1

v1 =
RL1

RL1 + RTh
VTh v2 =

RL2

RL2 + RTh
VTh

+
–VTh

RTh

RL2
–

+
v2

IN RN RL2

i2

IN RN RL1

i1
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Now that we see the basic approach, we can apply it to other circuits. 
Attach a known load resistance and determine the corresponding port 
voltage. Then attach a second load and find the port voltage for that. Use 
the results to find the Thevenin (or Norton) equivalent for the circuit.

v1 =
RL1

RL1 + RTh
VTh

v2 =
RL2

RL2 + RTh
VTh

VTh =
v1v2 (RL1 − RL2)

RL1v2 − RL2v1

RTh =
RL1RL2 (v1 − v2)

RL1v2 − RL2v1

Again, this also works using the Norton model.

=
i2v1 − i1v2

i2 − i1

=
v1 − v2

i2 − i1

Linear 
circuit with 

port a-b
RL2

–

+
v2

i2

Linear 
circuit with 

port a-b
RL1

–

+
v1

i1



G. Tuttle Thevenin / Norton – 11

Example 1
Use two different load resistors (say 2.2kΩ and 22 kΩ) to determine the 
Thevenin equivalent of the two-source, two-resistor circuit shown earlier on 
page 6. Confirm that the Thevenin equivalent on page 7 is correct.

10V 4 mA

10 kΩ

R2 = 10 kΩ

2.2 kΩ 22 kΩ

Try node voltage: 

 

VS − v1

R1
+ IS =

v1

R2
+

v1

RL1

v1 =
Vs + ISR1

1 + R1

R2
+ R1

RL1

= 7.639 V

Eh, try superposition this time: 

v2 = 20.37 V 

v′ 2 =
R2∥RL2

R1 + R2∥RL2
VS = 4.074 V

v′ ′ 2 = IS (R1∥R2∥RL2) = 16.30 V

R2+
–VS

R1

IS RL2
–

+
v2R2+

–VS

R1

IS RL1
–

+
v1

Then,   and   

    Confirmed!

VTh =
v1v2 (RL1 − RL2)

RL1v2 − RL2v1
= 25 V RTh =

RL1RL2 (v1 − v2)
RL1v2 − RL2v1

= 5 kΩ
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Example 2
One lesson that we learn from Thevenin is that everything has some 
equivalent resistance with it — even things that we thought of as being 
“perfect” voltage sources. Let’s measure the Thevenin equivalent of a 
pair of rechargeable NiMH batteries connected in series1.

Two batteries in series. RL1 = 100 Ω. RL2 = 22 Ω.

  and  .

So for each battery, V ≈ 1.4 V and R ≈ 0.5 Ω. Batteries have resistance!

VTh =
v1v2 (RL1 − RL2)

RL1v2 − RL2v1
= 2.87 V RTh =

RL1RL2 (v1 − v2)
RL1v2 − RL2v1

= 1.03 Ω

 1 I frequently use this battery setup to power electronics circuits.
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open-circuit voltage / short-circuit current
Using two random loads to determine the values in the equivalent 
circuit seems pretty simple. There may be some numerical issues if we 
use load resistors that are much bigger or much smaller than RTh, but the 
method should work in general. 

However, by being a bit clever about the choice of RL1 and RL2, we can 
make the method even simpler. What if we chose RL1 to be an open 
circuit? (i.e. RL1 →  ) From the Thevenin circuit, we see that there will be 
no current due to the open circuit. Hence, there is no voltage drop across RTh 
and the open-circuit voltage voc must be equal to VTh! Boom — one 
measurement, one piece of the Thevenin. 🤯 On the other hand, using an 
open circuit with the Norton equivalent shows that , so .

But we are not finished.

∞

voc = INRN VTh = INRN

+
–VTh

RTh

–

+
voc = VTh

i = 0
IN RN

–

+
voc = IN RN
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We still need a second measurement. What if we choose RL2 to be a 
short-circuit (RL2 = 0)? In the Norton circuit, we see that the short circuit 
at the load effectively shorts out RN (no voltage across means no current 
through), and all of the source current must flow through the short, 
isc = IN!

IN RN

–

+
v = 0 isc = IN

+
–VTh

RTh

isc =
VTh

RTh

In shorting the output of the Thevenin circuit, we see that 

, and so .

Two simple measurements or calculations tell use every thing we need: 

1. From the open-circuit voltage, we find VTh. 

2. From the short-circuit current, we find IN. 

3. Then we can calculate RTh = RN = VTh / IN = voc / isc.

isc =
VTh

RTh
IN =

VTh

RTh
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Example 3a

10 V

1 kΩ2.2 kΩ

3.3 kΩ
VS +

–

R1 R3

R2
Let’s try the voc - isc technique 
on a simple example. The 
circuit at right is a nice one.

First, do the measurement in the lab. It’s easy — just build the circuit on 
a breadboard with the 10-V supply for VS. Use the multimeter at the 
port to first measure voc and then switch over to measure isc. 

The circuit 
voc = 6 V = VTH isc = 2.61 mA = IN

RTh =
6 V

2.61 mA
= 2.30 kΩ

+10 V 

ground

meter
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Now let’s do the same circuit with pencil and paper.

VS
+
–

R1 R3

R2

–

+
voc 

–

+
vR2 

i = 0

Example 3b
First voc. There is no current in the 
dangling R3 due to the open circuit, 
and so there is no voltage across it. 
Consequently, voc = vR2.

voc = vR2 =
R2

R1 + R2
VS

=
3.3 kΩ

2.2 kΩ + 3.3 kΩ
(10 V) = 6 V

Next isc. Clearly isc = iR3. First find 
iR1. Then use a current divider to 
find iR3.

iR1 isc = iR3VS
+
–

R1 R3

R2

iR1 =
VS

R123
=

VS

R1 + R2∥R3

isc = iR3 =
1
R3

1
R2

+ 1
R3

⋅ iR1

=
10 V

1 kΩ + 2.2 kΩ∥3.3 kΩ
= 3.37 mA

=
1

3.3 kΩ
1

2.2 kΩ + 1
3.3 kΩ

(3.37 mA) = 2.59 mA

VTh = voc = 6V IN = isc = 2.59 mA

RTH = voc /isc = 2.32 kΩ

Consistent with lab — with slight 
difference due to resistor tolerance.
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Alternative method for RTh
In some circumstances, we can use a short-cut for finding the Thevenin 
resistance. If the original circuit has only independent sources, we can 
find the equivalent resistance by deactivating all the sources, and then 
finding the equivalent resistance looking in at the port.

Linear 
circuit with 

sources 
deactivated

a

b

!

RTh

This works because the equivalent 
resistance derives from the network of 
resistors in the original circuit. If we remove 
the sources (deactivate them), we are left 
with just resistors, allowing us to find the 
equivalent resistance using the resistor 
reduction techniques learned earlier.

In a circuit having only independent sources, finding RTh directly using 
this short cut might be easier than voc and then isc. Using this short cut, 
we could find voc and RTh directly (and then calculate IN) or find isc and 
RTh directly (and then calculate VTh). 

But to re-emphasize, this short cut will not work if there are dependent 
sources in the circuit. Dependent sources cannot be deactivated. (Just 
like when doing superposition.) In that case, you must find voc and isc 
and then calculate the correct RTh.
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Or with pencil and paper. 

Again, the difference is 
attributable to resistor tolerances.

RTh = R3 + R1∥R2

= 1 kΩ + (2.2 kΩ)∥(3.3 kΩ)

= 2.32 kΩ

18

Example 3c
Use the short-cut method to find RTh directly.

In lab, with the source removed and 
replaced with a short, use an ohm-
meter at the port to find RTh. R1 R3

R2 RTh
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Cautions when measuring Thevenin in lab
The previous example implies that measuring equivalent circuits in the lab 
is straight-forward, but that is only half true. Finding open-circuit voltage is 
easy — just use the voltmeter at the open port. However, we must be 
careful if trying to directly measure short-circuit current or resistance. 

1. Directly shorting the output port of a circuit is usually not a good 
idea. Short circuits can result in high currents. This may cause the 
device to enter a current-limiting condition, if it is designed with 
protection. (Like the lab power supplies.) If the ammeter is used as the 
short circuit, the high current may cause the meter fuse to blow. In 
the worst case, the high current may cause damage in the circuit 
being tested. 

2. Even if nothing burns out, an ammeter is not a true short circuit. 
(Look back at the DMM lab exercises.) In circuits with “small-ish” 
resistors, the non-zero meter resistance may affect the measurement. 

3. When measuring a black box — where the details of the internal 
circuit are unknown — we cannot assume that there are no 
dependent sources. In that case, the “short-cut” method of using the 
ohmmeter to measure resistance directly is not reliable.
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The half-voltage method for measuring RTh

Since measuring equivalent resistance using short circuits or short cuts 
can be tricky, we are back to the original idea of attaching non-zero 
loads to the output, and then working backwards to find RTh. We can 
still find VTh easily by directly measuring voc. Then, we need only one 
resistance measurement. With a bit of cleverness, we can complete the 
measurement with no extra calculations. The trick is to use a 
potentiometer. 

First, use the voltmeter to measure the open-
circuit voltage. Then attach a potentiometer to 
the port. The nominal value of the potentiometer 
should be bigger than the expected equivalent 
resistance, but not too much bigger. Then, while 
measuring the voltage across the potentiometer 
with the voltmeter, adjust the resistance until the 
voltage is exactly half of the open-circuit 
voltage. At that point, Rp = RTh. Remove the 
potentiometer and measure its resistance.

+
– VTh

RTh

–

+
voc = VTh

+
– VTh

RTh

–

+
Rpvp

 when Rp = RTh.vp =
voc

2
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Example 3d Use the “half-voltage” method to 
find the Thevenin resistance.

VS +
–

R1 R3

R2
–

+
Rpvp

10 V

1 kΩ2.2 kΩ

3.3 kΩ

Pot removed. 
Measure voc.

Insert pot.  
Adjust to voc /2.

Disconnect. Measure 
RTh from the pot.

Circuit with 
10-turn, 10-kΩ 
potentiometer 
as the load.
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Measuring Thevenin / Norton equivalents
Suggested approach 

1. Use a voltmeter to measure open-circuit voltage at the port: voc = VTh. 

2. Attach a resistor to the port — small enough to ensure good current 
flow. (The current should be an appreciable fraction of expected IN.) 
Measure the port voltage and use the result along with voc to 
calculate RTh. 

3. Calculate IN = voc / RTh. 

Alternatives (But use caution.) 

a. Measure RTh by using a potentiometer to implement the “half-voltage 
method”. Should work, but watch for high currents. 

b. Use an ammeter as the short circuit. Beware of high currents that can 
damage the circuit or the meter. If RTh is small, the measurement may 
limited by meter resistance. 

c. Deactivate all independent sources. Use an ohmmeter to measure 
RTh directly. May be incorrect if there are dependent sources in the 
circuit, which is often the case with electronics.
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Calculating Thevenin / Norton equivalents
Approach that always works 

1. Using whatever analysis techniques you prefer, calculate the open-
circuit voltage at the port: voc = VTh. 

2. Connect a short circuit across the output. Using whatever 
techniques are appropriate, calculate the short-circuit current: 
isc = IN. 

3. Calculate RTh = RN = voc / isc. 

Short-cut method for resistance. 
(Works only if there are no dependent sources.) 

a. Deactivate all independent sources, and then calculate the 
equivalent resistance seen looking in at the port: Req = RTh = RN. 

b. Calculate either voc = VTh or isc = IN (your choice) as in described in 
steps 1 or 2 above. 

c. Calculate the other source using the resistance from part a: 
VTh = Req·IN.
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When doing Thevenin/Norton calculations…
There are several examples illustrating calculation techniques in the companion 
set of notes, “Thevenin/Norton Examples”. Specific things to note: 

1. All the techniques learned earlier (including SPICE) are fair game for 
calculating VTh, IN, or RTh. Use whatever seems appropriate for the circuit. 

2. The voc and isc calculations are done on different circuits. Do not try to use 
results from the voc calculation in the isc circuit. This is a common mistake. 
Shorting the port changes the circuit — at the very least, there is one less node. 

3. Do not use the short-cut method for resistance if there are dependent sources. 

4. When doing voc calculations, do not be fooled by “dangling” resistors. A 
dangling resistor with no current has no voltage across it. It can be treated as if 
it were just wire in the voc calculation. 

5. When the port is shorted, shunt resistors will be shorted out. A shorted resistor 
has no voltage and hence no current. It can be ignored in the isc calculation. 

6. Finding the current in a wire by itself might seem weird — we never calculated 
the current in a wire in any previous examples. However, KCL still applies. 
Look at a node connected to the wire and find isc by summing up the other 
currents flowing into the node.
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Maximum power transfer
Now that we can model any linear circuit 
using a simple Thevenin (or Norton) 
equivalent, we can answer another 
important question that frequently arises 
in circuit design: Given a circuit, what 
value of load resistance results in 
maximum power delivered to the load? 

If we know the Thevenin equivalent of the 
circuit, the answer turns out to be quite 
simple.

–

+
RLvo

Some 
circuit

Max power?

–

+
RLvo+

– VTh

RTh

With the load attached, the output voltage is  

and the corresponding power delivered to the load is 

vo =
RL

RTh + RL
VTh

PL =
V2

ThRL

(RTh + RL)2
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If we view the power as a function of RL, we can find the maximum by 
using the usual calculus trick of taking the derivative and setting it equal 
to zero. 

Multiplying both sides by  and dividing by , leaves 

. 

Finishing: 

RL = RTh  for maximum power delivered to the load. 

With RL = RTh, vRL = VTh /2 (or iRL = IN /2) — only half the voltage (or 
current) appears at the output port. This may seem surprising, but recall 
that we are maximizing for power, not voltage or current. 

Also, half of the power generated by the equivalent source is dissipated 
in the equivalent resistance. Again, this may seem surprising, but it is a 
consequence of maximizing power delivered to the load. 

Refer back to the first example and the tables on pages 6 & 7 — the 
delivered power clearly peaks when RL = RTh.

dPL

dRL
=

V2
Th

(RTh + RL)2 − 2
RLV2

Th

(RTh + RL)3 = 0

(RTh + RL)3 V2
Th

RTh + RL − 2RL = 0
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R1IS

R2

R3 RL = ?

Example 4

This is a Thevenin/Norton equivalent problem 
in disguise. Obviously, we need to find an 
equivalent circuit. We can start by finding the 
resistance. Since there is only a single 
independent source, we can use the short-cut 
method. After deactivating IS: 

 

So RL should be 20 Ω.

Req = RTh = RN = R3∥(R1 + R2) = 20 Ω

For the circuit below, find the value of load resistance so that maximum 
power is delivered to the resistor. What is that maximum power ?

15 Ω0.5 A

10 Ω

100 Ω

R1

R2

R3 RTh
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Example 4 (cont.)
To calculate the actual power, we 
need either VTH or IN. Let’s use IN. 

Shorting the output — which shorts 
R3 — we can see that isc = iR2. Using 
a current divider:  

.

So IN = 0.3 A.

Finally, the load power is

isc = iR2 =
1
R2

1
R1

+ 1
R2

IS = 0.3 A

PL = i2
RLRL = ( IN

2 )
2

RL = 0.45 W

R1IS

R2

R3 isc

20 Ω0.3 A 20 Ω

Something to ponder: Suppose the question is reversed — given an RL of 
20 Ω and IS = 0.5 A, what values of R1, R2, and R3 should we choose in 
the circuit to deliver maximum power to RL? (Beware — trick question!)

RN RLIN iRL
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Example 5
Find the Thevenin and Norton equivalents 
for the circuit shown at right with respect to 
the port defined by a and b.  

This circuit looks rather odd, but we can 
sort it out easily by defining a ground and 
writing node-voltage equations at a and b. 

  and  .

The two nodes are independent. So finding 
the voltages is quite easy. 

 and  

.

Finally, VTh = voc = va – vb = 15 V.

VS − va

R1
=

va

R2

−vb

R3
= IS

va =
R2

R1 + R2
VS = 3 V

vb = − R3 ⋅ IS = − 12 V

150 Ω

330 Ω

220 Ω

5 V

80 mA

VS +
–

R1

R2

R3IS

a

b

VS
+
–

R1

R2

–

+

voc 

R3IS

va

vb
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Example 5 (cont.)
Find the short-circuit current. This looks even 
stranger. First, R2 and R3 are not shorted out 
because the ground connection allows for an 
alternate path for current to flow. Also, because 
of the short, vb = va, so there is only one 
unknown node. (As outlined by the red box.) 

Finally, isc = iR1 – iR2.  (Also isc + iR3 = IS.) Either 
way, we need to find the node voltage. 
Summing currents carefully, 

.iR1 + iR3 = iR2 + IS

.

. 

Plugging in numbers gives va = –4.02 V.

Finally, 

VS − va

R1
+

−va

R3
=

va

R2
+ IS

va =
VS − R1IS

1 + R1

R2
+ R1

R3

isc = iR1 − iR2 =
VS − va

R1
−

va

R2
= 53.2 mA

VS
+
–

R1

R2

R3IS

va

vb = va

isc

RTh =
voc

isc

= 282 Ω
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Or we might choose to use the 
short-cut method to find RTh, 
since there are only independent 
sources in the circuit. 

After deactivating the sources (IS 
removed, VS shorted), the resistor 
network is shown. 

It is pretty easy to see the 
equivalent resistance between a 
and b:

RTh = R3 + R1∥R2

= 150 Ω + (220 Ω) ∥ (330 Ω)

= 282 Ω

As expected.

Example 5 (cont.)

R2

R3

RTh

R1 a

b



G. Tuttle Thevenin / Norton – 32

Example 6
Find the Thevenin and Norton 
equivalents for the circuit shown at right. 

First, find voc. Clearly, voc = vR4. Node-
voltage analysis might be the most 
expedient approach. Then voc = vy. VS +

–

R1 R3

R2 R4

R5

IS

a

b
iR1 = iR2 + iR3

iR1 + iR5 + IS = iR4

Vs − vx

R1
=

vx

R2
+

vx − vy

R3

vx − vy

R3
+

Vs − vy

R5
+ IS =

vy

R4

(1 +
R1

R2
+

R1

R3
)vx −

R1

R2
vy = VS

−
R5

R3
vx + (1 +

R5

R3
+

R5

R4
)vy = VS + R5IS

VS
+
–

R1 R3

R2
–

+
voc R4

R5

IS

vx vy

1.5 kΩ 1 kΩ

10 kΩ3.3 kΩ

10 kΩ

10 V

6 mA

Inserting values and solving gives vx = 11 V and vy = 15 V. So VTh = 15 V.
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VS +
–

R1 R3

R2 R4

R5

IS

vx vy= 0

isc

Next, calculate the short-circuit 
current. Start by noting that R4 will 
be shorted out. Also, with the port 
shorted, vy = 0. 

Using KCL, we see that 

isc = iR3 + iR5 + IS

iR5 =
VS − vy

R5
=

VS

R5
= 1 mA

To find iR3, we will need to determine the 
node voltage, vx. Writing the NV equation: 

Inserting values gives vx = 3.385 V.

VS − vx

R1
=

vx

R2
+

vx

R3

vx =
VS

1 + R2

R1
+ R3

R1

Then: 

IN = isc = 10.385 mA

Finally, 

RTh = voc / isc = 1.44 kΩ

isc =
3.385 V

1 kΩ
+ 1 mA + 6 mA

= 10.385 mA

Example 6 (cont.)
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R1 R3

R2 R4

R5

RTh

Or we might choose to use the 
short-cut method to find RTh, 
since there are only independent 
sources in the circuit. 

After deactivating the sources (IS 
removed, VS shorted), the resistor 
network is shown above right. 

After noting the arrangement of 
the resistors, we can redraw the 
network — it might be easier. 

Then, from the point of view of 
the port, the resistance is

R3

R2 R4 RThR1 R5

RTh = R5∥R4∥ (R3 + R1∥R2)
= (10 kΩ) ∥ (10 kΩ) ∥ (2.03 kΩ)
= 1.44 kΩ Confirming the previous calculation.

Redraw.

Example 6 (cont.)
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Find the values for the Thevenin and 
Norton equivalents for the circuit at 
right. 

Because this circuit has a dependent 
source, we will not be able to use the 
short-cut method to find equivalent 
resistance. We must find voc and isc. 

Use NV to find voc. 

.
Vs − voc

R1
+ Id =

voc

R2

Id = γ ⋅ vR1 = γ (VS − voc)
VS − voc + γR1 (VS − voc) =

R1

R2
voc

voc =
VS (1 + γR1)
1 + γR1 + R1

R2

Example 7

Inserting values 

  

       = 4 V  = VTh.

voc =
(24 V) [1 + (0.1 mS) (10 kΩ)]
[1 + (0.1 mS) (10 kΩ) + 10 kΩ

1 kΩ ]

1 kΩ

γ = 0.1 mS

10 kΩ

24 V
R2

R1

+
–VS Id 

γvR1

–+ vR1
a

b

R2

R1

+
–VS Id 

γvR1

–+ vR1

–

+
voc 
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Next, find isc. When shorting the 
output, R2 is shorted out. We see 
that 

Since the upper right node is now 
grounded, vR1 = VS : 

 = 4.8 mA

Finally,  .

VTh = 4 V, IN = 4.8 mA, RTh = 833 Ω

isc = iR1 + γvR1

isc =
VS

R1
+ γVS

=
24 V

10 kΩ
+ (0.1 mS) (24 V)

RTh =
voc

isc
= 833 Ω

Example 7 (cont.)

R2

R1

+
–VS Id 

γvR1

–+ vR1
isc

v = 0

Note that if we had incorrectly tried 
to use the short-cut method for 
finding RTh, we would have shorted 
the voltage source and then 
probably removed the dependent 
current source, leaving the two 
resistors in parallel. The result would 
have been “close-ish” to the actual 
value, but definitely not correct.
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Find the values for the Thevenin 
and Norton equivalents for the 
circuit at right. 

Again, with the dependent source, 
we will not be able to use the 
short-cut method to find equivalent 
resistance. We must find voc and isc. 

First voc. Hmmm. This is not a 
simple circuit. It needs three node 
voltages or two mesh currents with 
a supermesh. We will try NV. 

IS = iR1 + iR3

iR1 = iR2 + Id = iR2 + βiR2

iR3 + βiR2 = iR4

Example 8

IS

R1

R2 R4

R3

iR2
βiR2

a

b

15 Ω

100 Ω

β = 5

100 Ω

10 Ω0.2 A

IS

R1

R2 R4

R3

iR2

βiR2

–

+
voc 

vx

vy vz
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The NV equations are: 

Rearranging a bit: 

IS =
vx − vy

R1
+

vx − vz

R3
vx − vy

R1
=

vy

R2
+ β

vy

R2
= (β + 1)

vy

R2
vx − vz

R3
+ β

vy

R2
=

vz

R4

(1 +
R1

R3 )vx − vy − (R1

R3 )vz = R1IS

−vx + [1 +
R1

R2
(1 + β)]vy = 0

−vx − β( R3

R2 )vy + (1 +
R3

R4 )vz = 0

Example 8 (cont.)
Inserting values 

We can use a solver directly. Or use the 
middle equation to eliminate vx from the 
first and third equations. 

Solving the resulting 2x2 gives

vy = 0.5 V and vz = 15 V. And then vx = 5 V.

Since voc = vz, 

VTh = vz = 15 V.

1.15vx − vy − 0.15vz = 3 V

−vx + 10vy = 0

−vx − 50vy + 2vz = 0

10.5vy − 0.15vz = 3 V

−60vy + 2vz = 0
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Next, find isc. Shorting the output 
shorts R4 as well. Then 

.

We need to find the new values 
for vx and vy. Use NV again. 

Solving gives vx = 2.86 V and vy = 0.286 V. 

isc = iR3 + βiR2

IS =
vx − vy

R1
+

vx

R3
vx − vy

R1
= (β + 1)

vy

R2

(1 +
R1

R3 )vx − vy = R1IS

−vx + [1 +
R1

R2
(1 + β)]vy = 0

1.15vx − vy = 3 V

−vx + 10vy = 0

Example 8 (cont.)

Then 

and .

Finally,  

isc = 28.6 mA + (5)(28.6 mA) = 0.172 A.

At last! We have arrived: 

VTh = 15 V, IN = 0.172 A, and

iR3 =
2.86 V
100 Ω

= 28.6 mA

iR2 =
0.286 V

10 Ω
= 28.6 mA

RTh =
15 V

0.172 A
= 87 Ω

IS

R1

R2 R4

R3

iR2

βiR2

vz= 0

isc

vx
vy



G. Tuttle Thevenin / Norton – 40

Find the value of load resistance 
that will result in maximum power 
delivered to the load. Calculate that 
maximum power. 

(Obviously, this is another way of 
saying “Find the Thevenin or 
Norton equivalent of the circuit.”) 

Since a key to finding the max 
power is finding the resistance, and 
since this circuit has only 
independent sources, we could 
begin by using the short-cut 
method to find RTh. 

After deactivating the sources, the 
equivalent resistance seen from the 
output port is straight forward. 

So the load resistance should be 
50 Ω for maximum power.

Example 9

R1 R4

R2 R5
R3 R6

RTh

RTh = R5 [R4 + R6 + R2 (R1 + R3)]
= (100 Ω) [80 Ω + (100 Ω) (25 Ω)]

10 Ω

20 V

R2 = R5 = 100 Ω

15 Ω

47 Ω

33 Ω

= 50 Ω

0.2A

VS +
–

R1 R4

R2 R5

IS

a

b

RL
R3 R6
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However, to calculate the maximum 
power, we also need the Thevenin 
voltage (or Norton current.) 

As always, we can choose the 
analysis method. Let’s use the mesh-
current method to find the Norton 
current. With the port shorted, R5 is 
shorted. With the circuit set up for 
MC analysis, we see that isc = iy.

Example 9 (cont.)

VS − vR1 − vR2 − vR3 = 0

vR2 − vR4 − vR6 = 0

VS − R1 (ix − IS) − R2 (ix − iy) − R3ix = 0

R2(ix − iy) − R4(iy − IS) − R6iy = 0

(R1 + R2 + R3) ix − R3iy = VS + R1IS

−R2ix − (R2 + R4 + R6) iy = R4IS

Insert values: 

Solving: 

ix = 0.384 A and iy = 0.25 A

(125 Ω) ix − (100 Ω) iy = 23 V

−(100 Ω) ix + (180 Ω) iy = 6.6 V

isc = 0.25 mA → VTh = 12.5 V

Pmax = (6.25 V)2

50 Ω
= 0.781 W

VS +
–

IS

isc
–

+
vR2

–+ vR1 –+ vR4

– +vR3 – +vR6

ix iy
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Example 10

We are tasked with finishing the design of a small circuit that will be 
part of some electronic system. The basic topology is shown above. The 
circuit must have its equivalent resistance matched to the external 40-Ω 
load and be able to deliver 3.6 W to the load. Some of the internal 
resistors are already specified. Finish the design by choosing IS for the 
current source and A for the dependent voltage source so that the 
circuit is delivering its maximum available power to the load. 

As stated, RTh for the circuit should be equal to 40 Ω. Also, 

. 

Since at max power, vRL = VTh / 2, then VTh = 24 V. 

So we can find expressions for voc and isc, and then choose values so 
that the Thevenin equivalent of the circuit meets the requirements.

vRL = P ⋅ RL = (3.6 W) (40 Ω) = 12 V

IS
+
–

R1

R2
–

+
vR2

R3

a

b

RL   Vd 
= AvR2

10 Ω

15 Ω 10 Ω

40 Ω
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Example 10 (cont.)

IS
+
–

R1

R2
–

+
vR2

R3

   Vd 
= AvR2 –

+
voc IS

+
–

R1

R2
–

+
vR2

R3

   Vd 
= AvR2

isc

Find voc, which is equal to vR2. 

Avoc − voc

R1
+ IS =

voc

R2

voc =
R1IS

1 + R1

R2
− A

Find isc, which is equal to iR3. 

AvR2 − vR2

R1
+ IS =

vR2

R2
+

vR2

R3

vR2 =
R1IS

1 + R1

R2
+ R1

R3
− A

isc = iR3 =
vR2

R3
=

R1

R3
IS

1 + R1

R2
+ R1

R3
− A
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Example 10 (cont.)

   and     

We know that isc must be equal to voc / RTh = (24 V)/(40 Ω) = 0.6 A, and so 
we could treat the pair above as two equations in two unknowns (IS and 
A) and solve in the usual fashion. But the form of the two expressions 
suggests a possibly easier path. Dividing the left by the right:

voc =
R1IS

1 + R1

R2
− A

isc =

R1

R3
IS

1 + R1

R2
+ R1

R3
− A

IS has disappeared!

A bit of algebraic finagling gives 

A = 2.

voc

isc
= RTh =

R3 (1 + R1

R2
+ R1

R3
− A)

1 + R1

R2
− A

40 Ω =
(10 Ω) (4 − A)

2.5 − A

Now, knowing A, we can use 
the voc expression to find IS:

   

Design complete!

IS =
voc (1 + R1

R2
− A)

R1

=
(24 V) (0.5)

15 Ω
= 0.8 A
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Example 11 — Thevenin as an analysis tool

As a simple example, consider the 
ladder circuit shown, where we would 
like to find vR4. Earlier, we analyzed this 
circuit using several different methods 
— cascaded voltage dividers, node 
voltages, and mesh currents. Using a 
Thevenin equivalent gives us another 
option.

22 Ω

24 V 33 Ω

15 Ω

47 Ω
VS +

–
–

+
vR4

R1 R3

R2 R4

In the right circumstance, it is possible to use a Thevenin/Norton 
equivalent as circuit-analysis tool. Usually, this involves recognizing a 
piece of a circuit for which we already know the equivalent, and then 
substituting in to simplify subsequent calculations. 

Note how this contrasts with previous Thevenin/Nortion examples, 
where we used techniques from our circuit-analysis toolbag to find the 
voltages and currents needed to determine an equivalent. Now we 
circle around and use an equivalent to find a voltage or current.
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Taking a slightly different view of 
the circuit, we might treat R4 as a 
load attached to a port. Then we 
can find the Thevenin of the rest of 
the circuit with respect to that port. 

Recall that we found the Thevenin 
of this particular circuit back in 
Example 3 — we already know the 
result: 

 and 

Then 

Q.E.D.

VTh =
R2

R1 + R2
VS = 14.4 V

RTh = R3 + R1∥R2 = 28.2 Ω

vR4 =
R4

RTh + R4
VTh = 9 V

Example 11 (cont.)

VS +
–

R1 R3

R2 R4
–

+
vR4

Find Thevenin.
load

28.2 Ω

14.4 V 47 Ω
VTh +

–

RTh

R4
–

+
vR4
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Example 12 (Ex. 9 redux)
Of course, we can also use SPICE to find the equivalent circuits. Below 
are simulations using LTspice for the circuit of Example 8. (Note the 
placement of the ground, making it easy to display the desired voltages.)

VTh = voc = 12.5 V. IN = isc = 0.2 A + (1.65 V)/(33 Ω) = 0.25 A.

(Note: These simulations were done with the Mac version of LTspice, which is 
somewhat hamstrung in terms of displaying DC currents. If using the 
Windows version, a better way to show isc would be to attach a voltage 
source with value 0 V (same as a short circuit) across R5 and then display the 
current through the “short source”.)

isc
–

+
voc


