Superposition

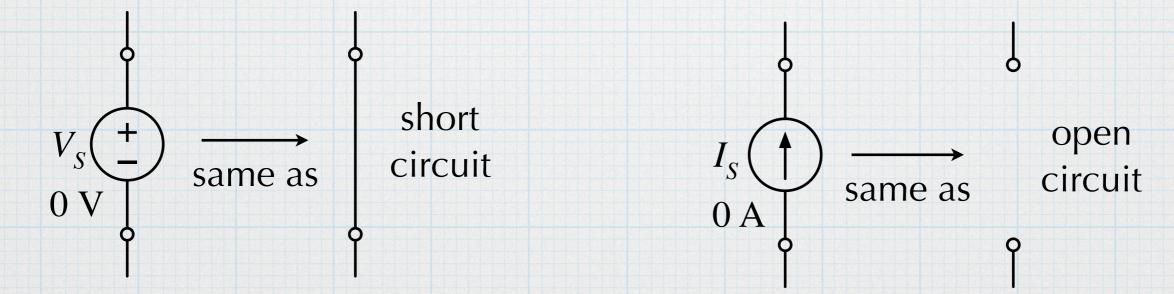
- Equivalent resistance
- Voltage / current dividers
- Source transformations
- Node voltages
- Mesh currents
- Superposition

In a circuit having more than one independent source, we can consider the effects of the sources one at a time.

A math problem:

$$\begin{aligned}
8v_{a} - 2v_{b} &= 36 \text{ V} \\
-2v_{a} + 6v_{b} &= 2 \text{ V}
\end{aligned}$$
Solving gives: $v_{a} &= 5 \text{ V}, v_{b} &= 2 \text{ V} \\
8v'_{a} - 2v'_{b} &= 0 \\
-2v'_{a} + 6v'_{b} &= 2 \text{ V}
\end{aligned}$
Solving gives: $v'_{a} &= 0.09091 \text{ V} \text{ and } v'_{b} &= 0.36364 \text{ V} \\
8v''_{a} - 2v''_{b} &= 36 \text{ V} \\
-2v''_{a} + 6v''_{b} &= 0
\end{aligned}$
Solving gives: $v''_{a} &= 4.90909 \text{ V} \text{ and } v''_{b} &= 1.63636 \text{ V} \\
v'_{a} + v''_{a} &= 5.0 \text{ V} &= v_{a} \\
v'_{b} + v''_{b} &= 2.0 \text{ V} &= v_{b}
\end{aligned}$

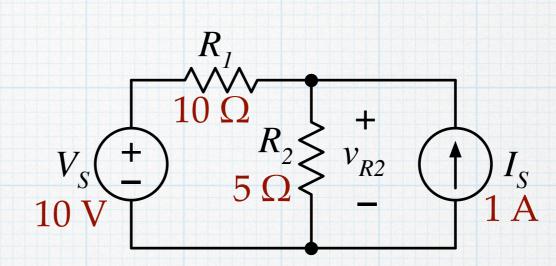
Mathematically, we can solve the simultaneous equations a piece at a time. If these equations are from a circuit, this math implies that we might be able to solve the circuit a piece at time.

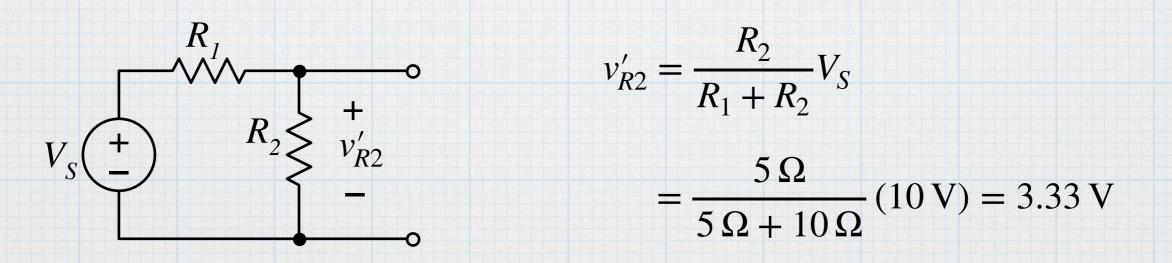

The superposition method

EE 201

In a circuit having more than one independent source, we can consider the effects of the sources one at a time.

If a circuit has *n* independent sources, then we will have to solve *n* separate circuits. It this easier? Perhaps. The resulting "partial" circuits will have one source and some resistors. We might be able to solve the partial circuits using the short-cut methods we saw earlier – each partial circuit may be very easy.


As we consider the effect of each source by itself, we must "turn off" (deactivate) all of the other sources. Deactivation means setting the values to zero.


Replace voltage sources with shorts. Replace current sources with opens.

Example of the superposition method

Consider the familiar twosource, two-resistor circuit one more time. Let's try superposition to find *v*_{R2}.

1. Deactivate (turn off) one of the sources — the order doesn't matter. Let's deactivate the current source first — set the value of *I*_S to zero, which has the same effect as replacing *I*_S with an open circuit. The result is a simple voltage divider, and we can easily calculate the partial result due to the voltage source.

2. Go back to the original circuit and turn off the other source – set V_s to zero, which is the same as replacing it with a short circuit.

$$\begin{array}{c}
R_{1} \\
10 \\
R_{2} \\
F_{2} \\
V_{R2} \\
F_{2} \\
V_{R2} \\
-1 \\
1 \\
\end{array}$$

Shorting V_S causes R_1 to be in parallel with R_2 .

$$v_{R2}'' = I_S (R_1 || R_2)$$

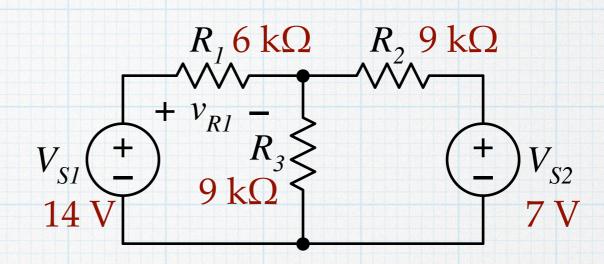
= (1 A) (5 $\Omega || 10 \Omega$) = 3.33 V

3. The complete answer is the sum (superposition) of the two partial answers.

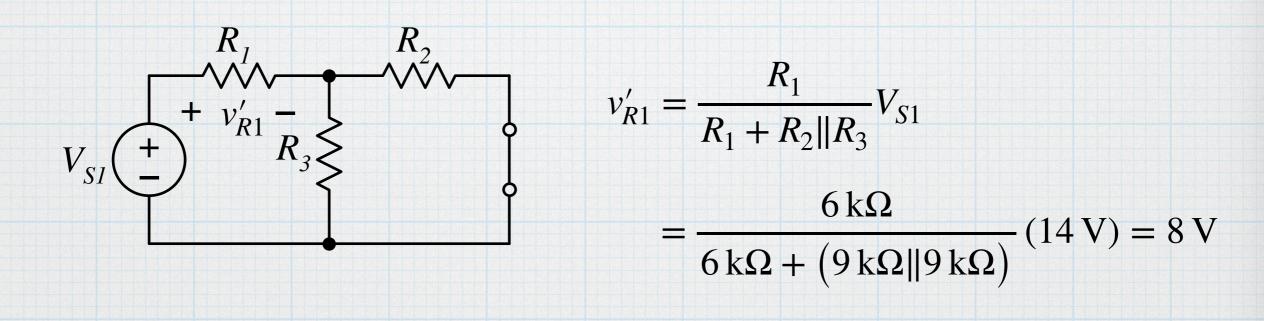
$$v_{R2} = v'_{R2} + v''_{R2} = 3.33 \text{ V} + 3.33 \text{ V} = 6.66 \text{ V}$$

Of course, this is identical to the values obtained by all of the other methods that were used to analyze this same circuit.

Summary of the superposition method


- 1. Identify all of the independent sources in the circuit.
- 2. Choose one source that will remain active. Deactivate all of the others. (Remove current sources, leaving open circuits. Replace voltage sources with short circuits.)
- 3. Using whatever techniques are appropriate, solve for the desired quantity (current or voltage) in the circuit. This will be a "partial" result, due only to the one active source in the circuit.
- 4. Return to the original circuit. Choose a different source to remain active and deactivate all of the others.
- 5. Solve again for the desired quantity, which will be a second partial result.
- 6. Continue in this manner, working sequentially through each of the sources in the circuit, finding a partial result for each.
- 7. Add together all of the partial results to obtain the total result corresponding to all of the sources working simultaneously in the circuit.

Cautions in using superposition


- Superposition only works with *linear* circuits. (Linear circuits contain only sources, resistors, capacitors, inductors, linear amplifiers, etc.) Most electronic devices (diodes and transistors) are non-linear, so superposition will not be applicable.
- 2. Because the method relies on linearity, you cannot add powers directly using the superposition method. (Power goes as v^2 or i^2 it is not linear.) Use superposition to find the total current or voltage and then calculate power from that result.
- 3. When finding the partial solutions, be sure to maintain the same voltage polarity and current direction in each case. For example, one source may induce the current in a particular resistor to flow in one direction while another source causes to a current flowing in the opposite direction. You must keep the proper signs when adding to the partial results to obtain the correct total result.

Example 2

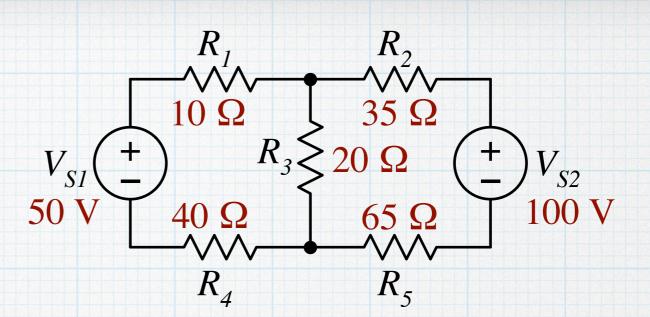
For the circuit shown, use superposition to find the value of v_{R1} .

1. Deactivate V_{S2} . The result is a voltage divider between R_1 and the parallel combination of R_2 and R_3 .

2. Now deactivate V_{SI} . Again, the result is a simple voltage divider, but now R_I is in parallel with R_3 . More importantly, note the polarity of v_{R1}'' — it will be *negative* for this partial solution.

$$R_{1} \bigvee_{R_{1}}^{R_{2}} \bigvee_{R_{1}}^{Q} k\Omega \qquad \qquad V_{R_{1}}^{"} = -\frac{R_{1} || R_{3}}{R_{1} || R_{3} + R_{2}} V_{S2}$$

$$R_{1} \bigvee_{R_{1}}^{Q} R_{3} \bigvee_{S}^{Q} k\Omega \qquad \qquad + V_{S2}$$


$$F \bigvee_{R_{1}}^{Q} V_{S2} = -\frac{(6 k\Omega || 9 k\Omega)}{(6 k\Omega || 9 k\Omega) + 9 k\Omega} (7 V) = -2 V$$

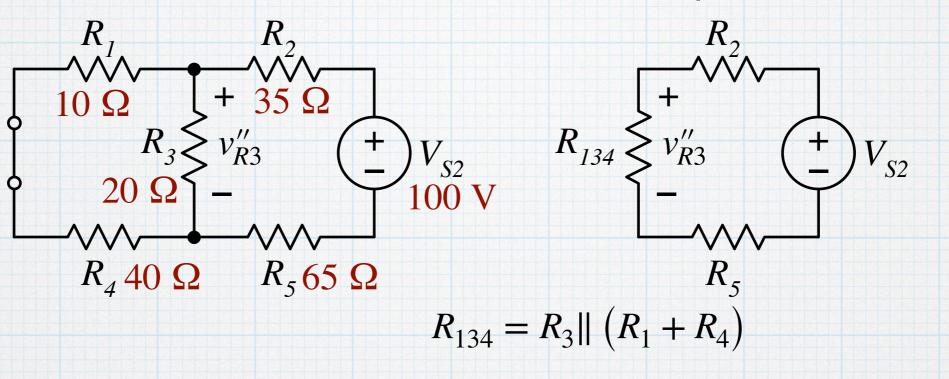
3. The complete solution is the sum of the two partial answers.

$$v_{R1} = v'_{R1} + v''_{R1} = 8 V - 2 V = 6 V$$

Example 3

For the circuit shown, use superposition to find the power being dissipated in *R*₃.

1. In using superposition, we cannot find "partial powers" — we need to find either total voltage or total current and then calculate power. For this problem, we will choose to find v_{R3} . Start by deactivating V_{S2} . We note that the series combination of R_2 and R_5 is in parallel with R_3 .


$$V_{SI} \stackrel{+}{\longrightarrow} R_{3} \stackrel{}{\longrightarrow} v_{R3}^{'} \stackrel{+}{\longrightarrow} v_{R3}^{'} \stackrel{+}{\longrightarrow} R_{235} = R_{3} \parallel (R_{2} + R_{5})$$

$$V_{SI} \stackrel{+}{\longrightarrow} R_{235} \stackrel{+}{\longrightarrow} v_{R3}^{'} = (20 \ \Omega) \parallel (35 \ \Omega + 65 \ \Omega)$$

$$= 16.67 \ \Omega$$

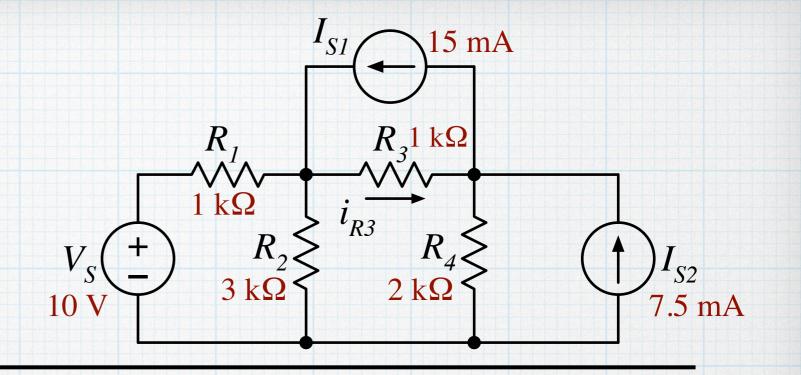
$$v_{R3}^{'} = \frac{R_{235}}{R_{235} + R_{1} + R_{4}} V_{S1} = \frac{16.67 \ \Omega}{16.67 \ \Omega + 10 \ \Omega + 40 \ \Omega} (50 \ V) = 12.5 \ V$$
superposition – 10

2. Go back to the original circuit and deactivate V_{S1} . Note that with V_{S1} shorted, the series combination of R_1 and R_4 is in parallel with R_3 .

$$= (20 \Omega) \parallel (10 \Omega + 40 \Omega) = 14.29 \Omega$$

$$v_{R3}'' = \frac{R_{134}}{R_{134} + R_2 + R_5} V_{S2} = \frac{14.29 \,\Omega}{14.29 \,\Omega + 35 \,\Omega + 65 \,\Omega} \,(100 \,\text{V}) = 12.5 \,\text{V}$$

3. The complete solution is the sum of the two partial answers.


$$v_{R3} = v'_{R3} + v''_{R3} = 12.5 \text{ V} + 12.5 \text{ V} = 25 \text{ V}$$

And finally, $P_{R3} = \frac{v_{R3}^2}{R_3} = \frac{(25 \text{ V})^2}{20 \Omega} = 31.25 \text{ W}$

EE 201

superposition - 11

Example 4

In the circuit, find i_{R3} . With three sources, there will be three partial solutions.

 R_3

 l'_{R3}

 R_3

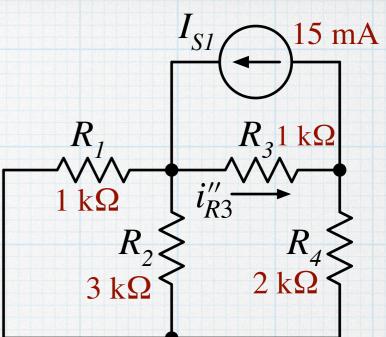
 R_{r}

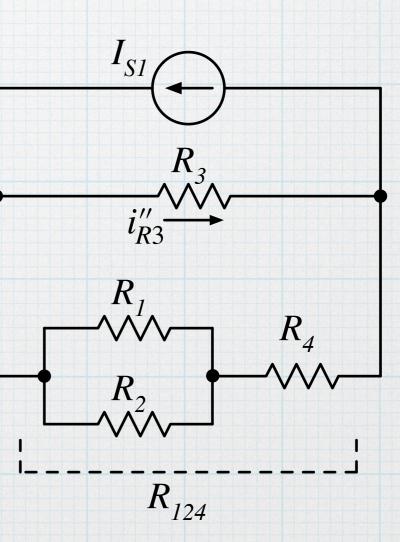
1. Start with *V_s*. Deactivate the two current sources. Find the partial current, using whatever short-cut methods you like. One approach: use a source transformation and then a current divider.

$$I'_{S} = \frac{V_{S}}{R_{1}} = \frac{10 \text{ V}}{1 \text{ k}\Omega} = 10 \text{ mA}$$

$$I'_{S} = \frac{I'_{S}}{R_{1}} = \frac{10 \text{ mA}}{\frac{1}{R_{3} + R_{4}}}$$

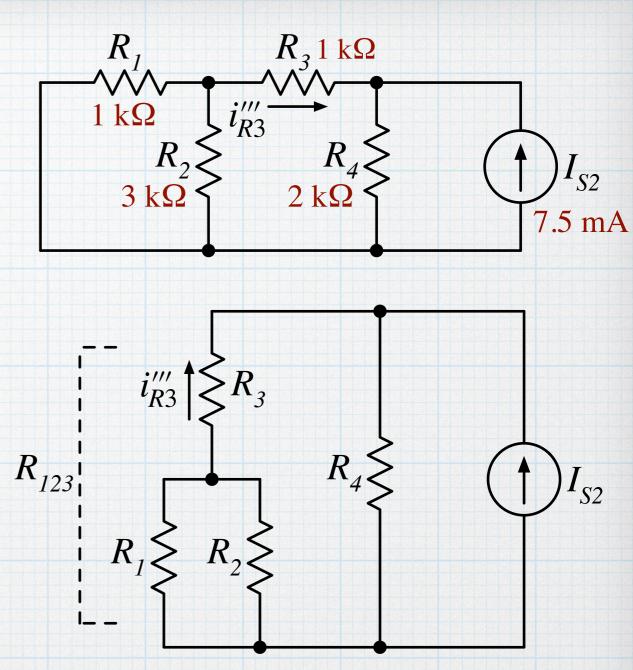
$$I'_{S} = \frac{I'_{S}}{\frac{1}{3 \text{ k}\Omega}} = \frac{I'_{S}}{1 \text{ mA}} = \frac{I'_{S}$$


 V_{ς}


2. Go back to the original circuit and deactivate V_s and I_{s_2} , keeping I_{s_1} . Note that shorting V_s places R_1 is in parallel with R_2 .

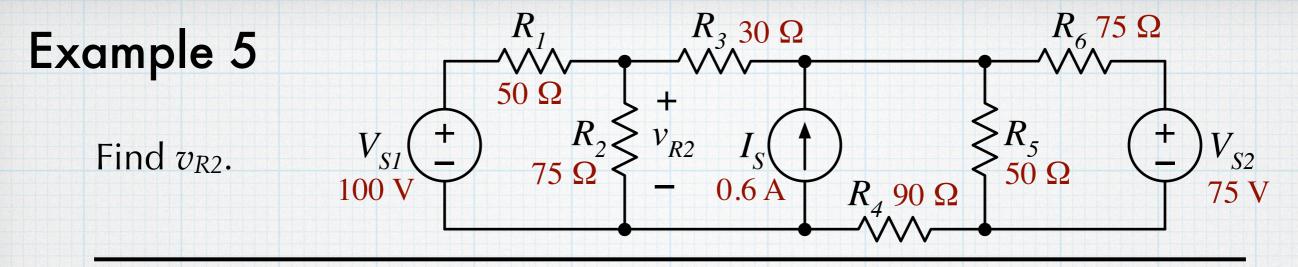
Examining the partial circuit, we see that it is essentially a current divider. The source current splits between two paths – one with R_3 and another that is a combination of R_1 , R_2 , and R_4 .

$$R_{124} = R_1 ||R_2 + R_4 = 1 \,\mathrm{k}\Omega ||3 \,\mathrm{k}\Omega + 2 \,\mathrm{k}\Omega = 2.75 \,\mathrm{k}\Omega$$


$$i_{R3}'' = \frac{\frac{1}{R_3}}{\frac{1}{R_3} + \frac{1}{R_{124}}} I_{S1}$$
$$= \frac{\frac{1}{1 \text{ k}\Omega}}{\frac{1}{1 \text{ k}\Omega} + \frac{1}{2.75 \text{ k}\Omega}} (15 \text{ mA}) = 11 \text{ mA}$$

3. To obtain the final partial circuit, go back to the original circuit and deactivate *V_s* and *I_{s1}*, keeping *I_{s2}*. As in the prior case, *R₁* is in parallel with *R₂*.

Again, we can find the current with a current divider. The source current splits between two paths – the branch with R_4 and another that is a *R* combination of R_1 , R_2 , and R_3 . Also, note carefully the direction – $i_{R3}^{\prime\prime\prime}$ will be negative!


 $R_{123} = R_1 ||R_2 + R_3 = 1 \,\mathrm{k}\Omega ||3 \,\mathrm{k}\Omega + 1 \,\mathrm{k}\Omega = 1.75 \,\mathrm{k}\Omega$

$$i_{R3}^{\prime\prime\prime\prime} = -\frac{\overline{R_{123}}}{\frac{1}{R_{123}} + \frac{1}{R_4}} I_{S2} = -\frac{\overline{1.75 \,\text{k}\Omega}}{\frac{1}{1.75 \,\text{k}\Omega} + \frac{1}{2 \,\text{k}\Omega}} (7.5 \,\text{mA}) = -4 \,\text{mA}$$

4. To complete the calculation, add the three partial results to get the total.

 $i_{R3} = i'_{R3} + i''_{R3} + i''_{R3} = 2 \text{ mA} + 11 \text{ mA} - 4 \text{ mA} = 9 \text{ mA}$

superposition - 14

This looks nasty – there are 6 nodes with a super node or 4 meshes with a super mesh. Either NV or MC will be tough. We might be able to do a bunch of source transformations, but since there are only three sources, let's try superposition. R_1 , R_3 , R_6

V_{SJ}.

 V_{SI}

 v'_{R2}

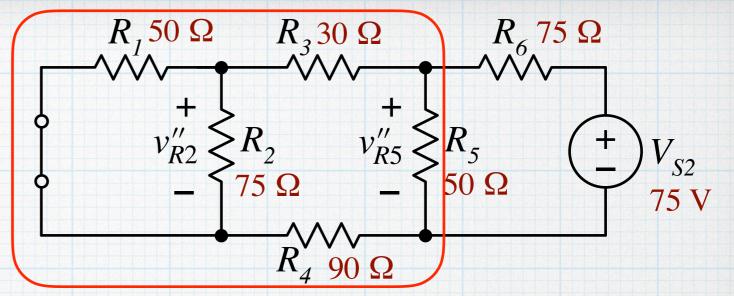
 v'_{R2}

 $R_1^{\mathbf{v}}$

 $\cdot R$,

 r_{26}

 R_{A}


 R_{5}

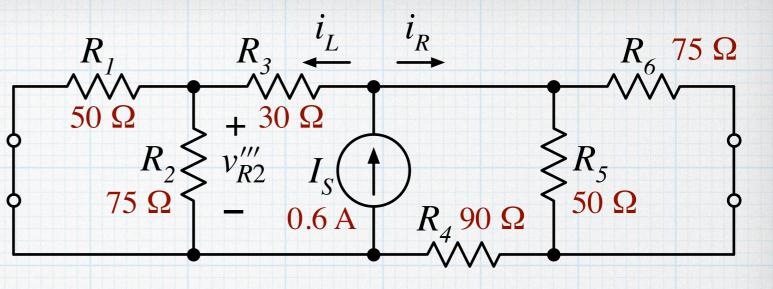
Start with V_{S1} . Deactivate I_S and V_{S2} . Shorting V_{S2} puts R_6 in parallel with R_5 . Use a voltage divider between R_1 and all the rest. Need the equivalent resistance of R_2 in parallel with all the other stuff.

$$R_{26} = R_2 \| \left(R_3 + R_4 + R_5 \| R_6 \right) = (75 \,\Omega) \| \left[30 \,\Omega + 90 \,\Omega + (50 \,\Omega) \| (75 \,\Omega) \right] = 50 \,\Omega$$
$$v_{R2}' = \frac{R_{26}}{R_{26} + R_1} V_{S1} = \frac{50 \,\Omega}{50 \,\Omega + 50 \,\Omega} (100 \,\mathrm{V}) = 50 \,\mathrm{V}$$
superposition – 15

Now V_{S2} . Go back to the original circuit and deactivate I_S and V_{S1} . Shorting V_{S1} puts R_1 in parallel with R_2 .

EE 201

Use voltage dividers twice: first to find the voltage across R_5 , then again to find voltage across R_2 . Need the equivalent resistance of R_5 and all of the stuff in parallel with it, seen looking back from V_{S2} .


$$R_{15} = R_{5} \| (R_{3} + R_{4} + R_{1} \| R_{2}) + V_{50} \| (75 \Omega) \| (75 \Omega) \| = 37.5 \Omega$$

$$= \frac{R_{15}}{R_{15} + R_{6}} V_{52} = \frac{37.5 \Omega}{37.5 \Omega + 75 \Omega} (75 V) = 25 V$$
Finally,
$$v_{R2}'' = \frac{R_{1} \| R_{2}}{R_{1} \| R_{2} + R_{3} + R_{4}} v_{R5}'' + \frac{R_{1}}{R_{2}} v_{R5}'' = 25 V$$

$$= \frac{30 \Omega}{30 \Omega + 30 \Omega + 90 \Omega} (25 V) = 5 V$$

$$R_{1} \| R_{2} = (50 \Omega) \| (75 \Omega) = 30 \Omega$$
superposition - 16

Finally, I_s . Deactivate V_{s1} and V_{s2} in the original circuit. The source current divides to the left and right according to the equivalent resistances on either side. First find the equivalent resistances left and right:

$$R_{L} = R_{3} + R_{1} || R_{2} \qquad R_{R} = R_{4} + R_{5} || R_{6}$$

= 30 \Omega + (50 \Omega) || (75 \Omega) = 60 \Omega = 90 \Omega + (50 \Omega) || (75 \Omega) = 120 \Omega

Use a current divider to determine the amount flowing to the left:

$$i_{L} = \frac{\overline{R_{L}}}{\frac{1}{R_{L}} + \frac{1}{R_{R}}} I_{S} = \frac{\overline{60 \,\Omega}}{\frac{1}{60 \,\Omega} + \frac{1}{120 \,\Omega}} \left(0.6 \,\mathrm{A}\right) = 0.4 \,\mathrm{A}$$

$$v_{R2}^{\prime\prime\prime} = i_L (R_1 || R_2) = (0.4 \text{ A}) (30 \Omega) = 18 \text{ V}$$

To finish, add the three partial results to get the total.

$$v_{R2} = v'_{R2} + v''_{R2} + v''_{R2} = 50 \text{ V} + 5 \text{ V} + 18 \text{ V} = 73 \text{ V}$$