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RLC transients

When there is a step change (or switching) in a circuit with capacitors 
and inductors together, a transient also occurs.  With some differences: 

• Energy stored in capacitors (electric fields) and inductors (magnetic 
fields) can trade back and forth during the transient, leading to 
possible “ringing” effects. 

• The transient waveform can be quite different, depending on the 
exact relationship of the values of C, L, and R. 

• The math is more involved.
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Series RLC

A step voltage source makes an instantaneous change from Vi to Vf at t = 0.

For t < 0:  i = 0, vR = 0, vL = 0, and vC = Vi.

Questions: What form does the transient take? What is τ?  How big 
should m be?
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When source voltage changes, some sort of transient will start.  
Presumably the transient will last for several time constants, eventually 
settling into the a final static state, where

For t > m·τ:  i = 0, vR = 0, vL = 0, and vC = Vf., where is t is the time 
constant (or constants!) of the system and m is the appropriate number 
of time constants needed for the system to settle.
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A second-order differential equation in standard form.

t ≥ 0:
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t > 0: vC = VI, vR = vL = 0.

VS = vR + vC + vL

Vf = iR + vC + L
di
dt
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2nd-order differential equations– review (or preview?)
g(x) is a “forcing function”

ft (x) → transient solution (sometimes called the homogenous solution) 

fs (x) → steady-state solution (sometimes called the particular solution)

The steady-state solution, fs (x) is any function that you can find that is a 
solution to the full differential equation.  Usually, it is found with a trial-and-
error approch. The form of g(x) will determine the form of fs (x).

Usually, there are two functions that satisfy the homogenous equation, ft1 and 
ft2 (eg. sin x and cos x or e+x and e–x) and the so the complete transient function 
is a linear combination of the two, ft (x) = A·ft1 (x) + B·ft2 (x). Finally, the two 
constants A and B are determined using the initial conditions, f (0) and df(0)/dx.

d2f (x)
dx2

+ a
df (x)

dx
+ bf (x) = g (x)

f (x) = ft (s) + fs (x)

d2ft (x)
dx2

+ a
dft (x)

dx
+ bft (x) = 0

The usual approach to solving 
second-order diff. eqs. is to split the 
solution into two functions:

Then ft(x) is the solution to the 
homogenous differential equation.
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Since the forcing function is a constant, try setting vcs(t) to be a constant.  
Since we don’t know what the constant value should be, we will call it 
V1. Insert into the differential equation.

V1 = Vf .

Since V1 is a constant, the two derivative terms are zero, and we obtain 
the simple result:

Actually, we already knew this — we had used physical arguments to 
predict that the capacitor voltage would equal Vf  at the end of the 
transient.

d2vC

dt2
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Apply the standard approach the capacitor voltage equation.

vc (t) = vct (t) + vcs (t)

d2V1

dt2
+

R
L

dV1

dt
+

V1

LC
=

Vf

LC

So vcs(t) = Vf, and we turn our attention to the transient solution.
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transient (homogenous) solution

Guess:

We need to determine s.  From experience we 
expect two values of s that will give us the two 
functions that are solutions.

so

d2vct

dt2
+

R
L

dvct

dt
+

vct

LC
= 0

vct (t) = Aest

s2 (Aest) +
R
L

s (Aest) +
1

LC (Aest) = 0

(s2 +
R
L

s +
1

LC ) (Aest) = 0

Aest ≠ 0 (s2 +
R
L

s +
1

LC ) = 0

Use the quadratic formula to find the (two!) 
values of s, giving two separate solutions

s1 = −
R
2L

+ ( R
2L )

2

−
1

LC

s2 = −
R
2L

− ( R
2L )

2

−
1

LCvct1 (t) = es1t vct2 (t) = es2tand

The general transient solution is a linear combination: vct (t) = Aes1t + Bes2t
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Initial conditions

We need  to determine the values for A and B, and do to that we use the 
initial conditions. From the expression above, it is obvious that A and B 
must both have units of volts.  The initial conditions are given by 
evaluating vc (t) and dvc (t)/dt at t = 0, in the instant just after the source 
switched to Vf.

vC (t) = vct (t) + vcs (t) = Aes1t + Bes2t + Vf

We are getting nearer to obtaining the final form of the capacitor voltage

vC (0) = Vi = A + B + Vf

At t = 0, the capacitor is still at its initial voltage, because we know that 
the capacitor cannot change instantaneously.   

The derivative of the capacitor voltage is:

dvC (t)
dt t=0

= s1A + s2B

But what is the value at t = 0?  We need use some secondary arguments 
to determine the correct value.
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Start by recalling that

But what is the current at t = 0?  Just before the voltage source switched, 
the capacitor current was zero. But the capacitor current can change 
instantaneously, so we don’t know what it may have jumped to after the 
switch. 

However, in the series circuit, iC(t) = iL(t) — capacitor current must be 
identical to the inductor current at all times. We know that the inductor 
current cannot change abruptly, and the inductor was zero before the 
switch.  So just after the switch, iL(0) = 0 — meaning that iC(0) = 0.

iC = C
dvC (t)

dt
,

dvC (t)
dt t=0

=
iC (0)

C
.and so

dvC (t)
dt t=0

= 0 = s1A + s2B

Using the two initial condition expression, we can solve for A and B.

A =
Vf − Vi
s1

s2
− 1

B =
Vf − Vi
s2

s1
− 1
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roots of characteristic equation

Transient behavior depends on the values of s1 and s2.

V� = � 5
�/ +

��
5
�/

��
� �
/& V� = � 5

�/ �

��
5
�/

��
� �
/&

Rename things slightly: R/2L = α and 1/LC = ωo.

V� = �� +
�

�� � ��R V� = �� �
�

�� � ��R

α is the damping factor or decay constant [s–1]

ωo is the resonant frequency or undamped natural frequency [radian/s].
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Overdamped response

The transient will consist of two decaying exponentials.

A one-way trip from Vi to Vf.

When , s1 and s2 will be both be real and negative.
R
2L

>
1

LC

vC (t) = Aes1t + Bes2t + Vf

= (Vf − Vi) es1t

s1

s2
− 1

+
es2t

s2

s1
− 1

+ Vf

For Vi = 0 V, Vf = 10 V, R = 250 Ω, L = 10 mH, and C = 1 µF: 

s1 = 5000 s–1 (τ1 = 0.2 ms) and s2 = 20,000 s–1 (τ2 = 50 µs), A = –13.33 V 
and B = 3.33 V.

vC (t) = − 13.33 V exp (−
t

0.2 ms ) + 3.33 V exp (−
t

50 μs ) + 10 V
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Over-damped response: Vi = 0 V, Vf = 10 V, 
R = 250 Ω, L = 10 mH, and C = 1 µF.
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Underdamped response

When , we crash headfirst into a mathematical difficulty 

when calculating the roots — the expression inside square root 
becomes negative, meaning that s1 and s2 will be complex numbers.

R
2L

<
1

LC

Alert! Alert!  It is time to deal with complex numbers.  Unless you are 
already very comfortable in working with complex number math, stop 
reading here and go read the notes on complex numbers.  In particular, 
focus on Euler’s relation and the connection between complex numbers 
and sinusoids. After reading through the notes, work complex math 
practice problems until you are proficient with doing calculations.  We 
could probably fake our way through this one section on underdamped 
response without having a good understanding complex numbers, but 
soon we will move to AC analysis where complex numbers will the 
central feature in how we handle problems.  Now is the time to learn — 
or relearn — complex numbers.
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With , the roots can be written in complex form:
R
2L

<
1

LC

s1 = −
R
2L

+ j
1

LC
− ( R

2L )
2

s2 = −
R
2L

− j ( 1
LC

−
R
2L )

2

We see that the two roots are complex conjugates, a result that has 
important implications in the math to come.  We can introduce some 
short-hand to simplify using the expressions.

s1 = σ + jωd s2 = σ − jωd

where  is the decay constant or damping factor.  It will 

determine the rate at which the transient response attenuates away and 

 is the damped oscillation frequency. It give the 

angular of the oscillations that occur.

σ = −
R
2L

ωd =
1

LC
− ( R

2L )
2
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Inserting the complex conjugate roots into the capacitor voltage 
expression:

vC (t) = Aes1t + Bes2t + Vf

= A exp [(σ + jωd) t] + B exp [(σ − jωd) t] + Vf

Re-arranging a bit:

vC (t) = A exp (σt) exp (jωdt) + B exp (σt) exp (−jωdt) + Vf

= exp (σt) [A exp (jωdt) + B exp (−jωdt)] + Vf

Using Euler’s relation, we can re-write the complex exponentials:

exp (jωdt) = cos ωdt + j sin ωdt exp (−jωdt) = cos ωdt − j sin ωdt

vC (t) = exp (σt) [A (cos ωdt + j sin ωdt) + B (cos ωdt − j sin ωdt)] + Vf

= exp (σt) [(A + B) cos ωdt + j (A − B) sin ωdt] + Vf
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We finish by expressing the A and B coefficients in terms of σ and ωd. 
The coefficient situation looks to be a bit of a mess, but the end result is 
surprisingly simple.

A + B =
Vf − Vi
s1

s2
− 1

+
Vf − Vi
s2

s1
− 1

= (Vf − Vi) [ s2

s1 − s2
+

s1

s2 − s1 ]
= (Vf − Vi) [ s2

s1 − s2
−

s1

s1 − s2 ]
= − (Vf − Vi)

j (A − B) = j
Vf − Vi
s1

s2
− 1

−
Vf − Vi
s2

s1
− 1

= j (Vf − Vi) [ s2

s1 − s2
−

s1

s2 − s1 ]
= j (Vf − Vi) [ s1 + s2

s1 − s2 ]
= j (Vf − Vi) [ (σ + jωd) + (σ − jωd)

(σ + jωd) − (σ − jωd) ]
= j (Vf − Vi) [ 2σ

j2ωd ]
= (Vf − Vi) [ σ

ωd ]
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vC (t) = Vf − (Vf − Vi) exp (σt) (cos ωdt −
σ

ωd
sin ωdt)

Inserting the coefficients and putting it all together:

We see oscillating behavior due to the sinusoidal terms. Note σ < 0, and so 
the exponential is decaying.  This is then a damped sinusoid, meaning that 
the voltage will oscillate, but the amplitude of the oscillation will decrease 
exponentially with time — disappearing completely after about 5 time 
constants, where the time constant is τ = |σ|–1. 

However, ignoring the surprising oscillations, the equation still describes a 
basic transient.  At t = 0, the factor inside the bracket reduces to 1, and the 

starting voltage is  ,  as expected.  After a 

sufficiently long time the exponential will decay away, with the bracketed 
term heading to zero, leaving  , also as expected. 

The oscillations during the transient are often referred as “ringing”.  The same 
phenomenon occurs in mechanical systems (or any second-order system), 
with percussion instruments being audible examples.  Striking a bell or 
cymbal or drumhead causes an under-damped ringing transient that lasts for a 
time determined by the mechanical properties of the system.

vC (0) = Vf − (Vf − Vi) = Vi

vC (t → ∞) = Vf
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Under-damped response: Vi = 0 V, Vf = 10 V, R = 75 Ω, L = 10 mH, and C = 1 µF.
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Under-damped response: Vi = 0 V, Vf = 10 V, R = 25 Ω, L = 10 mH, and C = 1 µF.
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Observations of underdamped response
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Critically damped response

If

This causes a bit of a problem, because we are left with only one term 
in the general solution, and hence only one coefficient – not enough to 
satisfy the initial conditions.

This suggests that there must be another solution lurking around in the 
math.  In the special circumstances for the critically damped case, the 
homogeneous equation can be written:

5
�/ =

��
/&

(α = ωo) then s1 = s2 (double root).

G�YWU

GW�
+ ��GYWU

GW + ��YWU = �

Y& (W) = $HV�W + %HV�W + 9I = &HV�W + 9I

= & exp

�
� W
�//5

�
+ 9I

Note: This will almost never happen.  It will be the wildest fluke if the 
components have exactly the correct ratios to meet the above requirement.  
For the most part, critical damping is only of academic interest.
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G�YWU

GW�
+ ��GYWU

GW + ��YWU = �

G
GW

�
GYWU
GW + �YWU

�
+ �

�
GYWU
GW + �YWU

�
= �

G\
GW + �\ = � where \ =

GYWU
GW + �YWU

$H��W =
GYWU
GW + �YWU\ = $H��W

$ = H�W GYWU
GW + �H�WYWU

$ =
G
GW

�
H�WYWU

�

$W + % = H�WYWU

YWU (W) = ($W + %) H��W Now there are two constants.
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Y& (W) = ($W + %) H��W + 9I

Also a fast trip from Vi to Vf.

Use initial conditions to find A and B.

YF (�) = 9L = % + 9I

GY&
GW

����
W=�

= � = $ � �%

$ = �
�
9L � 9I

�

% =
�
9L � 9I

�

Y& (W) =
�
9L � 9I

�
(�+ �W) H��W + 9I

solve to give:
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Under-damped response: Vi = 0 V, Vf = 10 V, R = 200 Ω, L = 10 mH, and C = 1 µF.
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parallel RLC

Current source makes an abrupt change from Ii to If at t = 0.

If

t = 0Ii

IS R C L
iR ic iL –

v
+

,6 = L5 + L& + L/

=
Y
5 + &GY

GW + L/

t < 0:

v = 0.

iR = 0.

iL = Ii.

iC = 0.

t >> τ:
v = 0.

iR = 0.

iC = 0.

iL = If.

Y = /GL/
GW

,I =
/
5

GL/
GW + /&G�L/

GW�
+ L/

t > 0: initial conditions (t = 0)

L/ (�) = ,L

GL/ (W)
GW

����
W=�

=
Y/ (�)
/ =

Y& (�)
/ = �G�L/

GW�
+

�
5&

GL/
GW +

L/
/& =

,I
/&
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G�L/
GW�

+
�
5&

GL/
GW +

L/
/& =

,I
/&

This has exactly the same form as the series case, with inductor current 
replacing capacitor voltage.  The steady-state function will be iss = If, 
and the transient function will have the general form:

LWU (W) = $HV�W + %HV�W

V� = � �
�5& �

��
�
�5&

��
� �
/&

V� = � �
�5& +

��
�
�5&

��
� �
/&

= �� +
�

�� � ��R

= �� �
�

�� � ��R

� =
�
�5& damping factor - note the 

difference from series case

�R =
��
/& resonant frequency
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We will obtain the exact same set of results for the parallel case:

�
�5& >

��
/&

(� > �R) overdamped – both roots are real and negative.

L/ (W) =
�
,L � ,I

�
�

HV�W
�� V�

V�
+

HV�W
�� V�

V�

�
+ ,I

�
�5& =
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/&

(� = �R) critically damped – repeated root.

L/ (W) =
�
,L � ,I

�
(�+ �W) H��W + ,I

L/ (W) =
�
,L � ,I

�
H��W

�
cos �GW +

�

�G
sin �GW

�
+ ,I

�
�5& <

��
/&

(� < �R) underdamped – roots are complex conjugates.

�G =
�

��R � ��

(Virtually impossible to 
have critical damping.)


