Voltage/current dividers

Voltage and current dividers are easy to understand and use. They are so easy that it may seem not worth the bother of learning them as a separate techniques. But the divider methods, when combined with the equivalent resistances, may be the most used technique in electronics. Knowing how to use dividers will allow us to quickly recognize what is happening in a circuit and determine important voltages and currents. An engineer could certainly analyze and design circuits without having voltage and dividers in their "tool bag", but they would be wasting lots of time writing unnecessary KVL and KCL equations.

Voltage divider

Consider a portion of circuit that has several resistors in series, like the circuit at right. Suppose we want to find the voltage across R_{2}.

We could start by finding the current, which would be equal to the source voltage divided by the equivalent resistance of the string.

$$
i_{S}=\frac{V_{S}}{R_{e q}}
$$

For the series string, $R_{e q}=R_{1}+R_{2}+R_{3}$.
Then the voltage across R_{2} is just

$$
v_{R 2}=R_{2} \cdot i_{S}=\frac{R_{2}}{R_{e q}} \cdot V_{S}=\frac{R_{2}}{R_{1}+R_{2}+R_{3}} \cdot V_{S}
$$

The total voltage is divided among the resistor in the string. The fraction of the voltage across R_{2} is given by a simple resistor ratio.

The other resistor voltages are calculated just as easily.

The three divided voltages sum up to V_{S}, as KVL insists. If we insert some numbers: $V_{S}=15 \mathrm{~V}, R_{1}=4.7 \mathrm{k} \Omega, R_{2}=15 \mathrm{k} \Omega$, and $R_{3}=10 \mathrm{k} \Omega$.

$$
\begin{aligned}
& v_{R 1}=\frac{4.7 \mathrm{k} \Omega}{4.7 \mathrm{k} \Omega+15 \mathrm{k} \Omega+10 \mathrm{k} \Omega}(15 \mathrm{~V})=2.37 \mathrm{~V} \\
& v_{R 2}=\frac{15 \mathrm{k} \Omega}{4.7 \mathrm{k} \Omega+15 \mathrm{k} \Omega+10 \mathrm{k} \Omega}(15 \mathrm{~V})=7.58 \mathrm{~V} \\
& v_{R 3}=\frac{10 \mathrm{k} \Omega}{4.7 \mathrm{k} \Omega+15 \mathrm{k} \Omega+10 \mathrm{k} \Omega}(15 \mathrm{~V})=5.05 \mathrm{~V}
\end{aligned}
$$

Current divider

Same idea, but with parallel resistors dividing a current. Suppose we want to know the current through R_{2}.

We could start by finding the voltage, which would be equal to the source current multiplied by the equivalent resistance of the parallel resistors.

$$
v_{S}=I_{S} \cdot R_{e q}
$$

For the parallel combination, $R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}$
Then the current through R_{2} is

$$
i_{R 2}=\frac{v_{S}}{R_{2}}=\frac{R_{e q}}{R_{2}} \cdot I_{S}=\frac{\frac{1}{R_{2}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \cdot I_{S}
$$

As in the case of the voltage divider, the fraction of the current through one resistor is determined by a simple ratio based on resistor values. But in the current case, resistor inverses are used.

The other resistor currents are calculated just as easily.

The three divided currents sum up to I_{S}, as KCL insists. If we insert some numbers: $I_{S}=15 \mathrm{~mA}, R_{1}=2.2 \mathrm{k} \Omega, R_{2}=3.3 \mathrm{k} \Omega$, and $R_{3}=6.8 \mathrm{k} \Omega$.

$$
\begin{aligned}
& i_{R 1}=\frac{\frac{1}{2.2 \mathrm{k} \Omega}}{\frac{1}{2.2 \mathrm{k} \Omega}+\frac{1}{3.3 \mathrm{k} \Omega}+\frac{1}{6.8 \mathrm{k} \Omega}}(15 \mathrm{~mA})=7.54 \mathrm{~mA} \\
& i_{R 2}=\frac{\frac{1}{3.3 \mathrm{k} \Omega}}{\frac{1}{2.2 \mathrm{k} \Omega}+\frac{1}{3.3 \mathrm{k} \Omega}+\frac{1}{6.8 \mathrm{k} \Omega}}(15 \mathrm{~mA})=5.02 \mathrm{~mA} \\
& i_{R 3}=\frac{\frac{1}{6.8 \mathrm{k} \Omega}}{\frac{1}{2.2 \mathrm{k} \Omega}+\frac{1}{3.3 \mathrm{k} \Omega}+\frac{1}{6.8 \mathrm{k} \Omega}}(15 \mathrm{~mA})=2.44 \mathrm{~mA}
\end{aligned}
$$

In many instances, the combination of dividers with equivalent resistances provides for fast calculation of voltages and currents.

Example 1

In the circuit at right, find $v_{R 4}$. Since R_{3} and R_{4} are in parallel, they have the same voltage and we can use the parallel equivalent. We can also find the parallel equivalent of R_{1} and R_{2}.

$$
\begin{aligned}
& R_{34}=\frac{R_{3} R_{4}}{R_{3}+R_{3}}=333 \Omega \\
& R_{12}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}=320 \Omega
\end{aligned}
$$

Then use a voltage divider on the simplified circuit.

$$
v_{R 4}=\frac{R_{34}}{R_{12}+R_{34}+R_{5}} \cdot V_{S}=4.065 \mathrm{~V}
$$

Example 2

In the circuit at right, find $i_{R 2}$. Since R_{1} and R_{2} are in series, they have the same current, and we can use the series equivalent. We can also find the equivalent resistance of the branch with R_{4}, R_{5}, and R_{6}.

$$
\begin{aligned}
& R_{12}=R_{1}+R_{2}=51 \Omega \\
& R_{456}=\frac{R_{4} \cdot R_{5}}{R_{4}+R_{5}}+R_{6}=153 \Omega
\end{aligned}
$$

Then use a current divider on the
 simplified circuit.

$$
i_{R 2}=\frac{\frac{1}{R_{12}}}{\frac{1}{R_{12}}+\frac{1}{R_{3}}+\frac{1}{R_{456}}} \cdot I_{S}=1.19 \mathrm{~A}
$$

Example 3

Find $v_{R 2}$ and $v_{R 4}$ in the circuit.

We solve this using the voltage divider calculation twice in succession. First we find $v_{R 2}$ using a voltage divider formed by R_{1} and the equivalent resistance of R_{2} in parallel with the series combination of R_{3} and R_{4}.

Then the voltage $v_{R 2}$ is divided between R_{3} and R_{4}.

$$
v_{R 4}=\frac{R_{4}}{R_{3}+R_{4}} \cdot v_{R 2}=3 \mathrm{~V}
$$

Example 4

Find $i_{R 3}$ in the circuit.
Similar to example 3, we can cascade dividers to find the current in two steps.

I_{S} splits between R_{1} and the branch with R_{2}, R_{3}, and R_{4}. To find the current through R_{2}, we use the equivalent resistance of that branch, which forms a current divider with R_{1}. Then $i_{R 2}$ is divided between R_{3} and R_{4}.

$$
\begin{aligned}
R_{234} & =R_{2}+R_{3} \| R_{4} \\
& =3.3 \mathrm{k} \Omega
\end{aligned}
$$

$$
i_{R 2}=\frac{\frac{1}{R_{234}}}{\frac{1}{R_{1}}+\frac{1}{R_{234}}} \cdot I_{S}=0.4 \mathrm{~A}
$$

$$
i_{R 3}=\frac{\frac{1}{R_{3}}}{\frac{1}{R_{3}}+\frac{1}{R_{4}}} \cdot i_{R 2}=0.2 \mathrm{~A}
$$

Example 5

Find the voltage v_{x} indicated in the circuit at right.

By KVL, $v_{x}=v_{R 2}-v_{R 4}$.
We see that R_{1} and R_{2} form a voltage divider splitting V_{s}. The same for R_{3} and R_{4}.

Using voltage dividers.

$$
\begin{aligned}
& v_{R 2}=\frac{R_{2}}{R_{1}+R_{2}} \cdot V_{S}=66 \mathrm{~V} \\
& v_{R 4}=\frac{R_{4}}{R_{3}+R_{4}} \cdot V_{S}=10 \mathrm{~V}
\end{aligned}
$$

Then

$$
v_{x}=66 \mathrm{~V}-10 \mathrm{~V}=56 \mathrm{~V}
$$

Example 6

Find the voltage v_{x} indicated in the circuit at right.

As with the previous example, KVL tells us that $v_{x}=v_{R 2}-v_{R 4}$.
We see that the series combination $R_{1}+R_{2}$ forms a current divider with the series combination $R_{3}+R_{4}$, splitting I_{S} between the two branches.
Using current dividers.

$$
\begin{aligned}
& i_{R 1}=\frac{\frac{1}{R_{1}+R_{2}}}{\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}} \cdot I_{S}=10 \mathrm{~mA} \\
& i_{R 3}=\frac{\frac{1}{R_{3}+R_{4}}}{\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}} \cdot I_{S}=50 \mathrm{~mA}
\end{aligned}
$$

Then

G. Tuttle-2022 $\underset{x}{\nu_{x}}=i_{R 1} R_{2}-i_{R 3} R_{4}=28 \mathrm{~V}$.

Example 7

In the circuit at right, the switch can be opened or closed to control the voltage across R_{3}. When the switch is closed (R_{1} shorted out), $v_{R 3}$ is twice as big as the case when the switch is open (R_{1} not shorted.) How
 is R_{1} related to $R_{2}+R_{3}$?

There are several approaches to answering this question, but using voltage dividers is a convenient method. With the switched closed, R_{1} is shorted out and

$$
v_{R 3}=\frac{R_{3}}{R_{2}+R_{3}} \cdot V_{S}
$$

With the switch open, R_{1}

$$
\begin{aligned}
& v_{R 3}=2 v_{R 3}^{\prime} \\
& \frac{R_{3}}{R_{2}+R_{3}} \cdot V_{S}=\frac{2 R_{3}}{R_{1}+R_{2}+R_{3}} \cdot V_{S} \\
& R_{1}+R_{2}+R_{3}=2\left(R_{2}+R_{3}\right) \\
& R_{1}=R_{2}+R_{3}
\end{aligned}
$$

Example 8

In the circuit at right, the two switches can be opened or closed to control the current through R_{3}. Calculate the current through R_{3} for all combinations of the switches
 being open closed.
S_{1} open and S_{2} open: $i_{R 3}=I_{S}=100 \mathrm{~mA}$
S_{1} open and S_{2} closed: $i_{R 3}=\frac{\frac{1}{R_{2}}}{\frac{1}{R_{3}}+\frac{1}{R_{3}}} \cdot I_{S}=50 \mathrm{~mA}$
S_{1} closed and S_{2} open: $i_{R 3}=\frac{\frac{1}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{3}}} \cdot I_{S}=33.3 \mathrm{~mA}$
S_{1} closed and S_{2} closed: $i_{R 3}=\frac{\frac{1}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \cdot I_{S}=25 \mathrm{~mA}$

