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AC circuit analysis
The story so far: 

1. For circuits that are driven by sinusoidal sources (e.g. vs(t) = Vm·cos(ωt) ), the 
voltages and currents are always sinusoids oscillating at the same frequency 
as the source and having distinct amplitudes. If there are capacitors and 
inductors in the circuit then the sinusoidal voltages and currents may also 
have phase shifts with respect to the source. These sinusoids, with the 
various amplitude and angles, are easy to see and measure in the lab. 

2. Calculating the amplitudes and phase angles using conventional 
differential-equation techniques is messy and may involve a lot of 
trigonometric gymnastics. 

3. If we ignore transients effects and focus on the steady-state part of the 
solution, the math is made easier by leaving out half of the problem. This is 
known as sinusoidal steady-state analysis. 

4. If we describe the sinusoids using complex exponentials (Vm·ejωt) instead of 
sines and cosines, the math needed to solve the differential equations is 
easier. But there is a tradeoff — we have introduced complex numbers. 
Complex math is messy, but the complex form provide a compact way to 
describe the amplitude and phase shift information of the sinusoidal 
voltages and currents. They are convenient, if we learn how to use them.



EE 201 AC — the impedance way – 2

iR (t) =
Vmejωt

R
=

vR (t)
R

vR (t)
iR (t)

= R

iC (t) = C
d (Vmejωt)

dt
= jωC [vC (t)]

vC (t)
iC (t)

=
1

jωC

iL (t) =
1
L ∫ Vmejωtdt =

vL (t)
jωL

vL (t)
iL (t)

= jωL

But there is more to this business of using complex numbers. To see it, apply 
a complex exponential voltages to individual resistors, capacitors, and 
inductors and find expressions for the resulting currents.

👀 !!

Big deal. It’s just Ohm’s law.

Wut !?!

Vmexp(jωt)
+
–

i(t)
R

Vmexp(jωt)
+
–

i(t)
C

Vmexp(jωt)
+
–

i(t)
L
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In each case, the sinusoidal voltage results in a sinusoidal current — no 
big surprise here. What is surprising is that, for each component, the 
ratio of the of sinusoidal voltage to the sinusoidal current is a number.  

Of course, we expect this for resistors because they obey Ohm’s law, 
but capacitors and inductors do not follow Ohm’s law. Yet, with 
sinusoids, there is a quantity that behaves almost like resistance. We call 
the quantity the impedance. Using impedance allows us to treat 
resistors, capacitors, and inductor in sinusoidal circuits in a unified 
manner.

i (t) =
vS (t)

Z
+
– Z

i(t)
vS (t) = Vm ⋅ ejωt

resistor:       capacitor:       inductor: Z = R Z =
1

jωC
Z = jωL
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Impedance
Impedance is complex, so it carries magnitude and phase angle 
information.

resistor: 

capacitor:  

inductor: 

iR =
vR

Z
=

vR

R
= ( vR

R ) ej0∘

iC =
vC

ZC
=

vC
1

jωC

= (jωC) vR = (ωC ⋅ vC) ej90∘

iL =
vL

ZL
=

vL

jωL
= ( vL

ωL ) e−j90∘

For the resistor, the current is exactly in phase with voltage. For the 
capacitor, the current leads the voltage by 90°. For the inductor, the 
current lags the voltage by 90°. 

These observations are in line with what we saw when using sines and 
cosines to describe oscillations. The derivatives in the capacitor and 
inductor i-v relations turned sines to cosines and vice-versa. 

Since impedance is defined as voltage divided by current, the units must 
be ohms.
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Impedance
The capacitor and inductor impedances are purely imaginary, and are 
referred to generally as reactances. We note that inductor and capacitor 
impedances have opposite signs. 

So for circuits that have inductors and capacitors, the impedances may 
tend to cancel each other. It is possible that they may cancel exactly 
(ZL = –ZC) — a situation that we call resonance. This “fight” between 
inductor impedance and capacitive impedance has important 
implications and applications. We will study some of these later in 201 
and in EE 230. 

Equally important is the frequency dependence of the two impedances. 
The inductor impedance increases proportionally with increasing 
frequency, the capacitor impedance decreases inversely with increasing 
frequency — exact opposites.

ZL = jωL

ZC =
1

jωC
= − j ( 1

ωC ) One-line proof:  
1
j

=
1

ej90∘ = e−j90∘ = − j
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|Z
|

ω

6

ZR

ZC

ZL

Frequency dependence of the magnitudes of the three impedances.

Resistors are frequency independent. Capacitors and inductors change 
behavior as the frequency changes.  

Having all three impedances meet at a single frequency, as shown in 
this graph would be unusual. But we could certainly force that to 
happen by making appropriate choices for R, L, C, and ω!
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 ZL = jωL

ZC =
1

jωC

At very low frequencies (ω → 0, which is just another way of describing 
DC),  

|ZL| → 0 and |ZC| → ∞.  

At DC, the inductor becomes a short circuit and the capacitor becomes 
an open circuit. This is not a surprise — this is exactly how we 
introduced the inductor and capacitor. At DC, an inductor is a fancy 
short circuit and a capacitor is fancy open circuit. 

But at very high frequencies (ω → ∞), the situation is quite different:  

|ZL| → ∞ and |ZC| → 0! 

The inductor and capacitor have completely switched roles. This is quite 
unexpected. Obviously, the ways that impedance changes with 
frequency will have a big impact on how a circuit behaves at different 
frequencies.
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+
– C

–

+

R1

R2

L

Consider this RLC 
circuit. VS is a sinusoid.

VS v2

Suppose the frequency is 
very low, ω → 0. (i.e. DC.) 
The inductor behaves like a 
short and the capacitor like 
an open.

VS v2 =
R2

R1 + R2
VS

Now let the frequency be 
very high, ω → ∞. The 
inductor behaves like a 
open and the capacitor 
like a short!

+
–

R1

R2
–

+
v2 = 0!VS

+
–

R1

R2
–

+

Using the frequency dependence of the impedances is an important part 
of manipulating and processing signals. (EE 230, EE 224)
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Impedances give us the opportunity to re-use the circuit analysis techniques 
that we learned at the beginning of 201. Recall that we combined Kirchoff’s 
Laws together with Ohm’s Law to solve many different resistive DC circuits 
using a variety of methods. Impedances are quantities that relate voltages and 
currents in exactly same way as resistors. This implies that we could use 
impedances together with Kirchoff’s Laws to solve AC circuits, using the same 
methods (dividers, node voltage, mesh current, etc.) that we learned earlier. 
Except that now the calculations will be done using complex numbers. We 
take on the burden of complex math so that we can return to our familiar 
circuit analysis methods and stop solving messy differential equations. 

So our AC analysis approach will be to first convert the AC circuit to its 
complex equivalent. (Sources become complex sinusoids and components 
become impedances.) Then we ask ourselves the question: “If the 
impedances were all resistors, what method would we use to find DC 
voltages and currents?” Then we apply that method using impedances instead 
of resistors. There will be complex math involved — maybe a little or maybe 
a lot. When we get through that, the results will be complex voltages and 
currents, which tell us the amplitudes and phase angles of the sinusoids.

Using impedances to analyze AC circuits
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The procedure for solving AC circuits using impedances is: 

1. Convert the sources to exponential sinusoids.  If there is only one 
source, we can choose its phase to be zero. If there are multiple 
sources, we will need to keep track of any phase differences 
between them. 

2. Convert the components to impedances. 

3. Use the usual collection of tools (dividers, node voltage, mesh 
current, etc.) to set up equations relating voltages and currents in the 
circuit. 

4. Grind through the complex algebra to find the complex values for 
the voltages and currents. (This is the worst part.) 

5. When finished, express the complex voltages and currents in 
magnitude and phase form.  The magnitude is amplitude of the 
oscillation and the phase is the shift relative to the source. These are 
the features that we would observe if the we built the circuit in the 
lab and used an oscilloscope to view the sinusoidal wave forms. 

Following are many examples, starting with a slew of dividers.
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Example 1

Transform to the complex version of the circuit.

ZR = R

ZC =
1

jωC

vC =
ZC

ZR + ZC
[Vm exp (jωt)]

Use AC analysis to find the sinusoidal form of the resistor voltage below.

In viewing the complex circuit and thinking about how to approach it if 
the impedances were all resistors, it seems that using a voltage divider 
would be a reasonable approach.

+
–

R

C
–

+
vC (t)vS (t) = Vm cos (ωt)

1 kΩ

0.1 µFVm = 5 V
ω = 10,000 rad/s 

+
–

–

+
vC

ZR

ZCVm exp (jωt)
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Working out the value for the voltage divider ratio: 

                 Mind the negatives. (1/j = –j !)

         Plug in the numbers. 

          Convert to magnitude/phase. 

                  Finish. 

Then the resistor voltage is 

ZC

ZR + ZC
=

1
jωC

R + 1
jωC

=
−j ( 1

ωC )
R − j ( 1

ωC )
=

−j1000 Ω
1000 Ω − j1000 Ω

=
(1000 Ω) e−j90∘

(1414 Ω) e−j45∘

= (0.707) e−j45∘

vR = [(0.8) e−j36.9∘] [(5 V) exp (jωt)] = (4 V) ej(ωt − 36.9∘)
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Plugging in numbers early in the calculation is OK, but sometimes the 
complex math is a little easier if we do a bit more algebra with symbols 
before switching to numbers. We might also gain some insight what is going 
on in the circuit. Go back to the voltage divider ratio: 

              Multiply top and bottom by jωC. 

                   Now plug in the numbers 

    And we get the same ratio. 

In this case, there is not a huge difference in the math process, but we do see 
a simplification that comes from using dimensionless quantities. (Note that 
ωRC is dimensionless — check the units.)

vR = (4 V) ej(ωt − 36.9∘)

ZC

ZR + ZC
=

1
jωC

R + 1
jωC

=
1

1 + jωRC

=
1

1 + j1

=
1

1.414 ⋅ ej45∘ = 0.707 ⋅ e−j45∘

The result is a sinusoid with amplitude of 4 V, 
shifted in phase by –36.9° from the source. 
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Example 2

+
–

L

R
–

+
vR (t)vS (t) = Vm cos (ωt)

Transform to the complex version of the circuit.

+
–

–

+
vR

ZL

ZRVm exp (jωt) ZR = R

ZL = jωL

vL =
ZR

ZR + ZL
[Vm exp (jωt)]

Use AC analysis to find the sinusoidal form of the resistor voltage below.

Again, using a voltage divider seems like a reasonable approach.

1 kΩ

15 mH

Vm = 5 V
ω = 50,000 rad/s 
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Working out the value for the voltage divider ratio: 

          Plug in the numbers. 

           Convert to magnitude/phase. 

                   Finish. 

Then the resistor voltage is 

A sinusoid with amplitude of 4 V, shifted in phase by –36.9° from the 
source.

ZR

ZR + ZL
=

R
R + jωL

=
1000 Ω

1000 Ω + j750 Ω

=
1000 Ω

(1250 Ω) e+j36.9∘

= (0.8) e−j36.9∘

vR = [(0.8) e−j36.9∘] [(5 V) exp (jωt)]
vR = (4 V) ej(ωt − 36.9∘)
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Alternatively, we can use a math trick similar to Example 1: 

               Divide top and bottom by R. 

             Plug in the numbers 

     Convert to magnitude/phase. 

          Finish. 

The final result would be the same. Note that the quantity ωL /R is 
dimensionless. (Check it.)

ZR

ZR + ZL
=

R
R + jωL

=
1

1 + j ωL
R

=
1

1 + j0.75

=
1

(1.25 ) e+j36.9∘

= (0.8) e−j36.9∘
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Time to drop the ejωt  factor
At the end of each of the previous examples, the answers were expressed 
as complex sinusoids, like . It should fairly obvious 
that every voltage and current in the circuit will have the factor ejωt built 
into it. The ejωt tells us that the quantity is oscillating with the angular 
frequency ω. Of course, we know that it will be oscillating at that 
frequency — the driving source sets up all the voltages and currents in the 
circuit. The source sets the pace and everything else must follow. 

Since we know that all quantities will be multiplied by ejωt, there is really 
no need to include it at each step. All we really need is the magnitude and 
phase of the voltage or current. Writing the above answer as 

 tells us everything we need to know. So from here on, we 
acknowledge that we know that everything is oscillating in the same 
manner, and we agree that we don’t need to attach ejωt everywhere. We 
know that is there implicitly, but we don’t need to write it explicitly. 

So a voltage source can expressed more simply: . 
To help us remember that the quantities in the circuit are complex numbers 
representing sinusoids, we will add a little hat (tilde) over voltages or 
currents:  or . (Looks like a tiny sine wave.)

vR = (4 V) ej(ωt − 36.9∘)

vR = (4 V) e−j36.9∘

Vmej(ωt − 0∘) → Vmej0∘ → Vm

ṼS = 10 V ṽR = (4 V) e−j36.9∘
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Example 3

Transform to the complex version of the circuit. (Use the new notation.)

ZR = R

ĩC =
1
ZC

1
ZR

+ 1
ZC

ĨS

Use AC analysis to find the capacitor current in the circuit below.

The theme of the day is dividers — use a current divider.

1 kΩ 0.1 µFIm = 25 mA
ω = 7500 rad/s 

CR

iC (t)

iS (t) = Im cos (ωt)

ZCĨS = Im ZR ĩC ZC =
1

jωC
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Working out the details for the current divider ratio: 

          Plug in the numbers. (Ω–1 = S) 

         Convert to magnitude/phase. 

                  Finish. 

Then the complex capacitor current is 

The capacitor current will be a sinusoid oscillating with angular frequency 
ω = 7500 rad/s, having an amplitude of 15 mA and shifted in phase by 53.1° 
from the source.

1
ZC

1
ZR

+ 1
ZC

=
jωC

1
R + jωC

=
j0.75 mS

1 mS + j0.75 mS

= (0.75 mS) e+j90∘

(1.25 mS) e+j36.9∘

= (0.6) e+j53.1∘

ĩC = [(0.6) ej53.1∘] (15 mA) = (25 mA) ej53.1∘
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Continuing with the math tricks, 

           Divide top and bottom by jωC. 

             Plug in the numbers 

     Convert to magnitude/phase. 

            Finish. 

We should no longer be surprised that the result is the same.

1
ZC

1
ZR

+ 1
ZC

=
jωC

1
R + jωC

=
1

1 + ( 1
jωRC )

=
1

1 − j1.333

=
1

(1.667 ) e−j53.1∘

= (0.6) ej53.1∘
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Example 4

Transform to the complex version of the circuit.

ZR = R

ĩR =
1
ZR

1
ZR

+ 1
ZL

ĨS

Use AC analysis to find the resistor current in the circuit below.

Ho Hum. Another day, another divider.

1 kΩ
0.015 H

Im = 0.5 A
ω = 66.7 krad/s 

ZL = jωL

LR

iR (t)

iS (t) = Im cos (ωt)

ZLĨS = Im ZR ĩR
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Looking at the current divider ratio: 

             Plug in the numbers. (1/j = –j !) 

         Convert to magnitude/phase. 

                And done. 

Then the complex resistor current is 

The resistor current is a sinusoid oscillating with angular frequency 
ω = 66,700 rad/s, having an amplitude of 0.354 A and shifted in phase by 
45° from the source.

1
ZR

1
ZR

+ 1
ZL

=
1
R

1
R + 1

jωL

=
1 mS

1 mS − j1 mS

=
1 mS

(1.414 mS) e−j45∘

= (0.707) e+j45∘

ĩR = [(0.707) ej45∘] (0.5 A) = (0.354 A) ej45∘
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More math trickery, 

             Multiply top and bottom by R. 

                   Plug in the numbers. 

        Convert to magnitude/phase. 

            Finish. 

Yup.

1
ZR

1
ZR

+ 1
ZL

=
1
R

1
R + 1

jωL

=
1

1 + ( R
jωL )

=
1

1 − j1

=
1.414

(1.667 ) e−j45∘

= (0.707) ej45∘
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Example 5

Transform to the complex version of the circuit.

ZR = R

ZL = jωL

ṽC =
ZC

ZR + ZC + ZL
ṼS

It’s more fun when there are resistors, capacitors, and inductors all 
together. Find the important sinusoid information about the capacitor 
voltage in the circuit. 

It’s hard to avoid voltage dividers.

1 kΩ

15 mH

Vm = 5 V
ω = 40,000 rad/s 

100 nF

+
–

R

C
–

+
vC (t)vS (t) = Vm cos (ωt)

L

+
–

–

+
ZR

ZC

ZL

ZC =
1

jωC
ṽCṼS

= Vm
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        Plug in the numbers. 

                    Combine. 

                       Convert. 

                         Finish. 

Then the complex capacitor voltage is 

A sinusoid with amplitude of 1.18 V, shifted in phase by –109.3° from the 
source.

ZC

ZR + ZC + ZL
=

1
jωC

R + 1
jωC + jωL

=
−j250 Ω

1000 Ω − j250 Ω + j600 Ω

=
−j250 Ω

1000 Ω + j350 Ω

= (250 Ω) e−j90∘

(1060 Ω) e+j19.3∘

= (0.236) e−j109.3∘

ṽR = [(0.236) e−j109.3∘] (5 V) = (1.18 V) e−j109.3∘
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There are some manipulations we can apply here as well. 

           Multiply top/bottom by jωC. 

     Re-arrange.    

                        Plug in the numbers 

                 Convert. 

                Finish. 

Note yet another dimensionless quantity: .  (Check this, too.)

ZC

ZR + ZC + ZL
=

1
jωC

R + 1
jωC + jωL

=
1

jωRC + 1 − ω2LC

=
1

(1 − ω2LC) + j (ωRC)

=
1

−1.4 + j4

=
1

(4.24 ) e+j109.3∘

= (0.236) e−j109.3∘

ω2LC



EE 201 AC — the impedance way – 27

Example 6

Transform to the complex version of the circuit.

ZR = R

ĩC =
1
ZC

1
ZR

+ 1
ZC

+ 1
ZL

ĨS

We should do an RLC current divider — it wouldn’t be right to ignore it. 
Find the capacitor current.

We know how this goes.

100 Ω 0.1 µFIm = 100 mA
ω = 66.7 krad/s 

ZC =
1

jωC

LRiS (t) = Im cos (ωt) C

iC (t)

15 mH

ZCZR ZL

ZL = jωL

ĩC
ĨS

= Im
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      Plug in the numbers. 

                     Combine. 

                   Convert. 

                          Finish. 

Then the complex capacitor current is 

We know what this means. We will skip the alternate math here, but you 
should try a math trick for yourself. (Multiply by jωL or divide by jωC.)

1
ZC

1
ZR

+ 1
ZC

+ 1
ZL

=
jωC

1
R + jωC + 1

jωL

=
j6.67 mS

10 mS + j6.67 mS − j1 mS

=
j6.67 mS

10 mS + j5.67 mS

= (6.67 mS) e+j90∘

(11.5 mS) e+j29.6∘

= (0.58) e+j60.4∘

ĩC = [(0.58) ej60.4∘] (100 mA) = (58 mA) ej60.4∘
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Z1 = R1

=
(R2) ( 1

jωC )
R2 + 1

jωC

1 kΩ

0.1 µFVm = 10 V
ω = 20,000 rad/s 

Example 7
Let’s try this circuit— it looks a bit like the RC circuit from example 1. 
Find the voltage across the parallel combination of R2 and C.

1 kΩ

+
– C

–

+
v2 (t)vS (t) = Vm cos (ωt)

R1

R2

+
–

–

+
Z1

Z2

In fact, this is yet another simple voltage divider, if we treat the R2-C 
combination as a single impedance.

ṽ2ṼS
= Vm

Z2 = ZR2 ZC = R2 ( 1
jωC )

=
R2

1 + jωR2Cṽ2 =
Z2

Z1 + Z2
ṼS
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Inserting the impedances into the voltage divider expression : 

Yikes! That looks messy. At this point in previous examples, we were able to 
substitute values directly and do the complex calculations without too much 
hassle. In this case, if we substitute values now, there will be many 
conversions back and forth between real-imaginary and magnitude-phase — 
the math will be quite tedious and prone to errors. In the earlier examples, we 
also showed that a bit of algebraic manipulation could make the math a bit 
cleaner, although the extra steps were not really necessary in those simpler 
problems. However, in this example, some algebraic manipulation is not just 
advisable, it is probably necessary in order to make the ensuing math tenable. 
To simplify this expression, we can multiply top and bottom by 1 + jωR2C: 

        That’s nicer. 

         Inserting values. Not bad at all.

Z2

Z1 + Z2
=

R2

1 + jωR2C

R1 + R2

1 + jωR2C

Z2

Z1 + Z2
=

R2

R1 + R2 + jωR1R2C

=
1000 Ω

2000 Ω + j2000 Ω
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Continuing with voltage divider ratio: 

       Convert to magnitude/phase. 

           Finish.  

Then the complex voltage across the parallel combination is 

 

There is one additional algebra step we might have tried before inserting 
values. If, after the first simplification, we divide top and bottom by R1+R2, 
the divider expression becomes: 

 

The extra step is not essential, but it does offer some insights.

Z2

Z1 + Z2
=

1000 Ω
2000 Ω + j2000

=
1000 Ω

(2828 Ω) e+j45∘

= (0.354) e−j45∘

ṽ2 = [(0.354) e−j45∘] (10 V) = (3.54 V) e−j45∘

R2

R1 + R2

1 + jω ( R1R2

R1 + R2 ) C
=

0.5
1 + j1

=
0.5

2ej45∘
= 0.354e−j45∘
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Z2 = R2

1 kΩ

15 mH
Im = 50 mA
ω = 50,000 rad/s 

Example 8

One more divider — find 
the key features of the 
sinusoidal current iR2.

Again, we have a simple current divider if we treat the R1-L  series 
combination as a single impedance.

ĩ2ĨS

= Im

Z1 = ZR1 + ZL = R1 + jωL

ĩ2 =
1
Z2

1
Z1

+ 1
Z2

ĨS

1 kΩ

Z2Z1

L

iR2 (t)iS (t) = Im cos (ωt)
R1

R2
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Inserting the impedances into the voltage divider expression: 

This could use some tidying up before inserting numbers. Multiply top and 
bottom by R1 + jωL: 

        That’s better. 

                     Inserting values — nice and clean. 

Then the complex current through R2 is

1
Z2

1
Z1

+ 1
Z2

=
1
R2

1
R1 + jωL + 1

R2

=

R1

R2
+ j ( ωL

R2 )
1 + R1

R2
+ j ( ωL

R2 )
=

1 + j0.75
2 + j0.75

= (1.25) ej36.9∘

(2.136) ej20.6∘
= (0.585) ej16.3∘

ĩ2 = [(0.585) ej16.3∘] (50 mA) = (29.25 mA) ej16.3∘
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1 kΩ

10 nF

Vm = 0.5 V ω = 8330 rad/s 

Example 9
Let’s try an op amp. Find the 
important information (magnitude, 
phase) for the sinusoidal output 
voltage.  

(Not a divider! Woo Hoo!)

How do ops amp work in a complex circuit? Just like they did before. 
The rules are unchanged: no current flows into the input, , 
and when there is a negative feedback loop, .  
If we treat the resistor/capacitor parallel combination as a single 
impedance, the complex version of the circuit has the form of a simple 
inverting amp.

ĩ+ = ĩ− = 0
ṽ+ = ṽ−

ṽS
= Vm

G =
ṽo

ṽs
= −

Z2

Z1

12 kΩ

–
+

R1

R2

C

vS (t) = Vm cos (ωt)

vS (t) vo (t)

–
+

Z1

Z2 Z2 = ZR2 ZC

=
R2

1 + jωR2C

Z1 = R1

ṽo

(As seen previously.)
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              With a tiny bit of re-arrangement: 

                    Inserting values 

              Transform to polar. Watch the negative sign!    

Then the complex output voltage is

Op amps are so easy.

G = −
Z2

Z1

= −

R2

1 + jωR2C

R1

=
− R2

R1

1 + jωR2C

=
−12

1 + j1

=
(12) ej180∘

(1.414) ej45∘

= (8.49) ej135∘

ṽo = G ⋅ ṽS = [(8.49) ej135∘] (0.5 V) = (4.24 V) ej135∘
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1 kΩ
10 uF

Vm = 0.5 V ω = 100 rad/s 

Example 10
Op amps are fun. Let’s do one more. 
Find the complex output voltage for 
the non-inverting amp at right.

It may not be immediately obvious that this is a non-inverting amp, but 
if we treat the R1-C series combination as a single impedance, we can 
draw the complex version of the circuit. Then it is familiar.

ṽS
= Vm

G =
ṽo

ṽs
= 1 +

Z2

Z1

22 kΩ
vS (t) = Vm cos (ωt)

vS (t) vo (t)

Z1 = ZR1 + ZC = R1 +
1

jωC

Z2 = R2

ṽo

–
+

R2R1

C

–
+

Z2

Z1

The complex expression for the gain 
of non-inverting amp would be:
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      Proceed with caution.

       It is easy to jump to wrong conclusions. 

                   

          Insert values 

    Transform to polar and finish.

Then the complex output voltage is

G = 1 +
Z2

Z1
= 1 +

R2

R1 + 1
jωC

=
R1 + 1

jωC

R1 + 1
jωC

+
R2

R1 + 1
jωC

=
R1 + R2 − j ( 1

ωC )
R1 − j ( 1

ωC )
=

23000 Ω − j1000 Ω
1000 Ω − j1000 Ω

=
(23002 Ω) e−j2.5∘

(1414 Ω) e−j45∘ = 16.27e−j42.5∘

ṽo = G ⋅ ṽS = [(16.3) ej42.4∘] (0.5 V) = (8.13 V) ej42.5∘
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This is an example where an extra math step leads to an instructive 
result. Starting at the step where 

            Divide top and bottom by R1. 

         Note how 1 + R2/R1 appears. 

   

G =
R1 + R2 − j ( 1

ωC )
R1 − j ( 1

ωC )

=

R1 + R2

R1
− j ( 1

ωR1C )
1 − j ( 1

ωR1C )

=
(1 + R2

R1 ) − j ( 1
ωR1C )

1 − j ( 1
ωR1C )

=
23 − j1
1 − j1

=
(23.02) e−j2.5∘

(1.414) e−j45∘ = (16.3) ej42.5∘


