Direct current / alternating current (DC / AC)

The types of sources used in a circuit determine everything about the currents and voltages that we see in the circuit.

DC \rightarrow does NOT change with time.
DC sources lead to circuit current, voltage, and power that are constant - unchanging with time.

There a numerous applications for DC circuits, but mostly used to supply power to electronic devices.

AC \rightarrow Everything else, i.e anything that does change with time.
sinusoids (power distribution, communications \& signal processing) square waveforms (digital logic, communications)
triangle waveforms

Sinusoids (sines and cosines)

$$
\begin{aligned}
& V_{S}(t)=V_{a} \sin (\omega t) \\
& \qquad \begin{aligned}
V_{a} & \rightarrow \text { amplitude } \\
\omega & \rightarrow \text { angular frequency } \\
V_{S}(t) & =V_{a} \sin \left(\frac{2 \pi}{T} t\right) \\
& =V_{a} \sin (2 \pi f t) \\
& =V_{a} \sin (\omega t)
\end{aligned}
\end{aligned}
$$

$T \rightarrow$ period (seconds)

$$
f=T^{-1} \rightarrow \text { period }\left(\mathrm{s}^{-1} \text { or hertz, } \mathrm{Hz}\right)
$$

$$
\omega=2 \pi f \rightarrow \text { angular frequency }(\mathrm{rad} / \mathrm{s})
$$

Cosine function is equally valid.

$$
V_{S}(t)=V_{a} \cos \left(\frac{2 \pi}{T} t\right)=V_{a} \cos (2 \pi f t)=V_{a} \cos (\omega t)
$$

Sinusoidal power in resistors

Consider a resistor with a voltage that is varying sinusoidally:

$$
v_{R}(t)=V_{a} \sin (\omega t)
$$

The current also varies sinusoidally:

$$
i_{R}(t)=\frac{v_{R}(t)}{R}=\frac{V_{a}}{R} \sin (\omega t)
$$

The dissipated power also varies with time:

$$
P_{R}=v_{R}(t) i_{R}(t)=\frac{V_{a}^{2}}{R} \sin ^{2}(\omega t)
$$

Instantaneous power - always positive!

Average power

Find the average power delivered to the resistor is a straight-forward exercise in integration. Integrate over one full period (or an integral number of periods) and divide by the time.

$$
\begin{aligned}
P_{a v g} & =\frac{1}{T} \int_{0}^{T} P(t) d t \\
& =\frac{1}{T} \int_{0}^{T} \frac{V_{a}^{2}}{R} \sin ^{2}(\omega t) d t \\
& =\frac{1}{T} \frac{V_{a}^{2}}{R} \int_{0}^{T}\left[\frac{1}{2}-\frac{1}{2} \sin (2 \omega t)\right] d t \\
& =\frac{1}{T} \frac{V_{a}^{2}}{R} \frac{1}{2}\left[\int_{0}^{T} d t-\int_{0}^{T} \sin (2 \omega t) d t\right] \\
& =\frac{1}{T} \frac{V_{a}^{2}}{R} \frac{1}{2}[T]=\frac{V_{a}^{2}}{2 R} \quad P_{a v g}=\frac{V_{a} I_{a}}{2}
\end{aligned}
$$

RMS values

To make it easy to compute powers in sinusoidal situations, we can define the "RMS amplitude". (root-mean-square)

$$
P_{\text {avg }}=\frac{V_{a} I_{a}}{2}=\left(\frac{V_{a}}{\sqrt{2}}\right)\left(\frac{I_{a}}{\sqrt{2}}\right)
$$

Define: $\quad V_{R M S}=\frac{V_{a}}{\sqrt{2}} \quad I_{R M S}=\frac{I_{a}}{\sqrt{2}}$
Then: $\quad P_{\text {avg }}=V_{\text {RMS }} I_{R M S}$

$$
\begin{aligned}
& P_{\text {avg }}=\frac{V_{a}^{2}}{2 R}=\frac{V_{R M S}^{2}}{R} \\
& P_{\text {avg }}=\frac{I_{a}^{2}}{2} R=I_{R M S}^{2} R
\end{aligned}
$$

Using RMS values makes the power equations for resistors identical to the DC case.

RMS values

Calculating RMS voltage or current directly: square it, find the average (mean), and take the square-root.

$$
\begin{aligned}
& V_{R M S}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d t} \\
& I_{R M S}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t}
\end{aligned}
$$

Can find the RMS for any voltage or current in a circuit (not just sources) and use it for power calculations.

To help denote RMS quantities in problems, in EE 201, we will append "RMS" as a subscript on the units.
examples: $v_{r 2}=3.6 \mathrm{~V}_{\text {RMS }}$ or $i_{s}=7 \mathrm{~A}_{\mathrm{RMS}}$.

RMS values

sinusoid: $\quad v(t)=V_{a} \cos (\omega t)$

$$
\begin{aligned}
V_{R M S} & =\sqrt{\frac{1}{T} \int_{0}^{T} V_{a}^{2} \cos ^{2}(\omega t) d t} \\
& =\sqrt{\frac{V_{a}^{2}}{T} \int_{0}^{T}\left[\frac{1}{2}+\frac{1}{2} \cos (2 \omega t)\right] d t} \\
& =\sqrt{\frac{V_{a}^{2}}{2}}=\frac{V_{a}}{\sqrt{2}}
\end{aligned}
$$

DC:

$$
\begin{aligned}
v(t) & =V_{D C} \\
V_{R M S} & =\sqrt{\frac{1}{T} \int_{0}^{T} V_{D C}^{2} d t}=\sqrt{\frac{1}{T} V_{D C}^{2} T}=V_{D C}
\end{aligned}
$$

RMS in the lab

multi-meter: In AC measurement mode, the values given are always RMS units.
function generator: Sinusoidal voltages can be described in terms of either peak-to-peak or RMS units. It's your choice, but be sure that you know which you are using. (Reminder: Don't forget about the "high-Z" setting on the function generator.)

Oscilloscope: Again, your choice. It will give values in peak-to-peak or RMS. Make sure that you know what you are reading.

In general, when measuring values, the multi-meter will probably be more accurate than the number that come off the oscilloscope. Not always true (depends on the scope and the meter), but usually the case.

