$\mathbf{E}\mathbf{E}$	201	_	HW	5	8
1717	4 01		11 7 7		C)

N	Vame			

A switching voltage source is connected directly across a $100-\mu H$ inductor. The voltage source is constant at 5 V for $100 \ \mu s$ and is then switched to a constant of $-2 \ V$ for $250 \ \mu s$. the cycles then repeats.

Make a good *quantitive* sketch of the inductor current as a function of time.

You can assume the inductor current is 0 at t = 0.

How would the sketch change if the voltage source were at –2 V for only 2 ms? If the voltage source kept switching back and forth forever, what would be the eventual inductor current after a very long time?