
The op amp in the circuit at right is ideal.

a. Calculate the expression for the output voltage as a function of the two input voltages, v_a and v_b

 $v_o =$

- b. If $v_a = 1$ V and $v_b = 0.33$ V, what is the value of the output? $v_o =$
- c. What is the output if $v_a = 1 \text{ V}$ and $v_b = 0.33 \text{ V}$ and $R_L = 2 \text{ k}\Omega$? $v_o =$
- d. What is the output if $v_a = 1$ V and $v_b = 0.33$ V and $R_L = 125 \Omega$? $v_o =$
- e. if $v_a = 1$ V and $v_b = 1.33$ V and $R_L = 500 \Omega$, what is the total power being delivered by the input voltage sources and what is the power being delivered to the load? How do you account for the difference?

 $P_{va} + P_{vb} = \underline{\hspace{1cm}}; P_{RL} = \underline{\hspace{1cm}}$