\qquad
a. For the circuit shown at right, when the switch is open (R_{3} and R_{4} disconnected), $v_{R 2}=15 \mathrm{~V}$. When the switch is closed $\left(R_{3}\right.$ and R_{4} are connected), $v_{R 2}=12 \mathrm{~V}$.
Determine the values for R_{2} and R_{4}.

Note: Using voltage divider techniques is probably an effective way to work this problem.
$R_{2}=$ \qquad ; $R_{4}=$ \qquad
b. For the circuit shown at right, when the switch is closed (R_{3} shorted), $i_{R 2}=20 \mathrm{~mA}$. When the switch is open (R_{3} not shorted), $i_{R 2}=10 \mathrm{~mA}$. Determine the values for R_{2} and R_{3}. Note: Using current divider techniques is probably an effective way to work this problem.

$$
R_{2}=
$$

\qquad

$$
R_{3}=
$$

